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Aims: This study aims to improve precipitation maps and generalize precipitation to areas 
without stations.
Materials & Methods: In this study, to improve precipitation maps and increase the 
accuracy of precipitation maps, linear, multiple regressions and kriging subsets were used. 
The data from 14 meteorological stations and IMERG images in 20 years (2001 to 2020), 
a digital elevation model, and latitude and longitude maps of the Kermanshah watershed 
were used. At first, based on regression in Minitab software, the relationship between air 
and terrestrial variables was taken. Finally, with the interpolation methods and based on the 
error coefficients, the best equation for predicting precipitation was determined, and the 
spatial distribution of precipitation was obtained.
Findings: According to the results, six out of 13 models were selected because of low RMSE 
and high R2, R, and NS. Forecast accuracy was reduced in regression models where only 
one climatic or edaphic variable was used. However, in the models used in the regression 
elevation, longitude, latitude, and IMERG variables in combination with interpolation 
methods, the extracted data matched the actual data with a slight difference. In this study, 
instead of the average of the input variables, the maps of each variable were used, increasing 
the forecast model’s accuracy to R2=0.8.
Conclusion: The results showed that combining satellite precipitation products with 
interpolation methods led to a more accurate estimate of precipitation in the points without 
recording data will be precipitated and the multiple regression method will be more accurate 
than the linear gradient.
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Introduction
Precipitation is one of the important com-
ponents in the hydrological and atmospher-
ic cycle, which is not only main for under-
standing the balance of the water cycle and 
climate variability [1, 2] but is used for a wide 
variety of applications, including; flood 
forecasting [3], drought monitoring [4], water 
resource management [5], and hydrological 
and land system modeling [6,7]. However, it 
is challenging to estimate high-quality pre-
cipitation at appropriate spatial and tempo-
ral resolutions [8].  Therefore, investigating 
the spatial changes of precipitation is one 
of the main inputs of hydrological models 
and research issues in climate studies. It is 
challenging to solve them due to the spatial 
and temporal variability of precipitation. [9, 

10, 11, 12]. The lack of basic data, such as pre-
cipitation, is considered a limiting factor 
for climate change studies in developing 
countries such as Iran. The short duration 
of time series or low distribution of data 
collection stations is an important factor in 
this field. For this reason, researchers and 
experts have always sought an alternative 
or an appropriate supplement to obtain in-
formation from terrestrial rain gauge [13]. 
Rain gauges are a traditional and reliable 
instrument used to measure precipitation 
on a point scale and are commonly used as 
benchmarks for evaluating different precip-
itation products. However, rainfall amounts 
have a different distribution in most parts 
of the world [14, 15]. Continuous estimation 
of spatial variability in precipitation based 
solely on observations based on rain gaug-
es is subject to great uncertainty [16]. Several 
methods estimate the amount of precipita-
tion in places without meteorological and 
rain gauge stations. Today, global precipita-
tion databases, satellite imagery, and inter-
polation methods have introduced one of 
the main and valid improvement options for 
the lack of data [17]. In the past few decades, 

the rapid development of remote sensing 
techniques has provided an unprecedented 
opportunity to estimate precipitation on a 
global scale continuously. Satellite-based 
precipitation products (SPPs) are increas-
ingly becoming publicly available, provid-
ing users with a powerful understanding 
of precipitation characteristics [18, 19, 1]. Fur-
thermore, it offers different precipitation 
products [20, 21, 22]. Nevertheless, precipita-
tion estimation methods using satellite im-
ages are relatively complex and have poor 
performance due to uncertainties and bi-
ases of retrieval algorithms, indirect mea-
surements, and lack of sensors (such as 
false detections of precipitation by infra-
red sensors in the presence of cold clouds 
without precipitation and local pressure 
storms) [23, 24], these cases raise problems in 
the field of recording spatial and temporal 
changes in precipitation and sensor limits 
in the direct observation of effective varia-
tions in precipitation formation. Also, using 
satellite images, the variables obtained are 
approximate, which will have an indirect 
and low ratio with the observed precipita-
tion [25]. Precipitation observations based 
on rain gauges are very accurate but with 
limited coverage and uneven distribution. 
On the other hand, satellite-based precipi-
tation products have continuous and wide 
coverage but with large errors. Therefore, in 
recent years, many efforts have been made 
to integrate SPPs and rain gauge observa-
tions to improve the accuracy and spatial 
coverage of precipitation estimates, some 
of which can be mentioned [26, 27, 18, 15, 28, 29]. 
(1) Linear interpolation methods, for exam-
ple, outlier removal [30], weighted distance 
inverse [31], average squared error [27]; (2) 
deviance-based methods or residual-based 
methods, for example, probability mapping 
method [32], geographic difference/ratio 
analysis [33, 34]; (3) kernel smoothing meth-
ods [35]; (4) approaches with moderate com-
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plexity, for example, geographic weighted 
regression (GWR) [36]; (5) some other more 
complex methods such as Bayesian aver-
aging method [37,38] and (6) Kriging -based 
algorithms [39, 40]. Using the above methods, 
as well as combining satellite products in 
different areas, has different functions. For 
example, Zhang et al. [41] reported that the 
IMERG product performs better than the 
SM2RAIN-ASCAT product in sub-humid ar-
eas of China. Whereas under the semi-arid 
area, that was the opposite of the situation. 
Integrating rain gauge-based observations 
with multiple satellite-based precipitation 
products rather than a single SPP results 
in accurate precipitation estimates [42]. In 
developing countries, where the number of 
stations with long-term statistics is often 
very small, the use of the methods men-
tioned may be significant. For example, the 
linear gradient methods based on the lin-
ear regression relationship between the 
main and auxiliary variables between the 
length, width, and elevation of the area, 
or the three-dimensional linear gradient 
method by fitting the multiple linear re-
gression multiple regression relationship 
between the main and auxiliary variables, 
it can estimate the value of the main vari-
able for the user in unknown points by 
specifying its latitude, longitude, and eleva-
tion [43]. Numerous studies have been car-
ried out to estimate precipitation and study 
atmospheric precipitation. In this regard, 
Worqlul et al. [44] evaluated terrestrial pre-
cipitation data (CSFR) and (TMPA 3B42) as 
input data for hydrologic models in sparse 
data areas. The results showed that TMPA 
3B42 cannot describe the temporal chang-
es of rain and that both types of rain gauge 
data and CFSR reanalysis data can produce 
river flow data. Poméon et al. [45]

,
 as part of 

a research study, evaluated remote sensing 
and reanalysis data from the west African 
region and compared them with existing 

rain gauge data. The results indicate that 
satellites with infrared and microwave in-
put data provide better results. Kumari et 
al.  [46] used weighted inverse and kriging 
family methods to measure precipitation 
in the Himalayan Mountains. The results 
showed that the simple kriging method is 
more efficient for estimating annual precip-
itation than seasonal precipitation. Arowolo 
et al. [47] used pattern correction and spline 
methods to estimate monthly temperature 
and precipitation in Nigeria. Based on the 
findings, the spline family methods are 
more appropriate than the trend correction 
method. The above shows no meteorolog-
ical stations in many parts of Iran and the 
study areas. Therefore, methods should be 
used to achieve precipitation at any point 
as pixels to improve precipitation maps. 
Therefore, the purpose of the upcoming 
study is to use intermediate methods and 
multiple regression to establish a relation-
ship between terrestrial and atmospheric 
variables. Then extracted, pixel point pre-
cipitation for the study area. In future re-
search, by combining the above maps with 
effective environmental variables, it will be 
possible to achieve precipitation with high 
accuracy and close to the terrestrial station 
for areas without meteorological stations.

Materials & methods
Study area
The study was conducted in Kermanshah 
Province, with an area of 43424 km2 (i.e., 
1.5% of the whole country) located in west-
ern Iran, one of the 31 provinces of Iran 
consisting of 14 townships. The province's 
capital is Kermanshah. The average annual 
precipitation in different regions varies from 
about 300 mm in the southwestern part of 
Somar and Naftshahr to about 800 mm in 
the highlands [48]. The average elevation of 
the province is 1200 m above the average 
sea level [49]. This province is exposed to 
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the wet fronts of the Mediterranean, which 
in the case of dealing with the Zagros high-
lands, causes rain and snow. Kermanshah 
Province has two main hot (summer) and 
cold (winter) seasons. The transitional sea-
sons of spring and autumn are very short 
and fleeting [50]. According to the important 
units of Iranian geologic formations, two 
critical formation zones, namely Zagros and 
Sanandaj-Sirjan, constitute the general geo-
logical structure of Kermanshah Province. 
The map and location of Kermanshah Prov-
ince are illustrated in Figure 1.
In the current research, the data of 14 synop-
tic stations of the  Meteorological Organiza-
tion and rain gauging were used to improve 
satellite  precipitation  in  areas  without 
stations  in  Kermanshah  province. In addi-
tion, 20 monthly satellite images and one 
annual image of the IMERG V06 Final satel-
lite from 2001 to 2020 were considered. The 
stations used are shown in Table 1, and their 
distribution map can also be seen in Figure 
1. Due to the complexity of the topography 

of Kermanshah province and the particular 
climatic conditions, and the small number of 
rain gauge stations with long-term periods, 
especially in the highlands of the province, it 
becomes difficult to estimate the province's 
precipitation through interpolation meth-
ods, satellite images, and remote sensing. 
To this end, finding appropriate methods to 
expand the province's precipitation system 
can significantly improve statistical quality 
and error in areas without precipitation sta-
tions.
Datasets
In order to achieve an approach to extract-
ing the precipitation map, IMERG Final V06 
satellite and station precipitation data were 
used. Preparing the precipitation map is 
based on four methods: linear regression, 
multiple regression, and interpolating load-
ing and coking. This study's precipitation 
time series was considered for 20 years 
(2001-2020).
Synoptic Stations
To examine station data performance, data 

Figure 1) General view of locality and corresponding townships of Kermanshah Province, Iran.
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from meteorological  stations in Kerman-
shah province were used for 20 years from 
2001 to 2020 (Figure 2). These data were 
obtained from the Meteorological Organi-
zation. Figure 1 shows the distribution of 
stations within the survey area. In addition, 
data from the stations were used to prepare 
linear and multiple precipitation gradients 
and for validation. The study area has 14 
meteorological stations with high spatial 
distribution, increasing the interpolation 
maps' accuracy.
Due to the randomness of precipitation data 
and evaluation criteria based on monthly 
and annual data, annual and monthly data 
from terrestrial and air stations were used 
to increase the accuracy of output results [51].  

Integrated Multi-Satellite Retrieval for 
GPM (IMERG)
This is an international project among sat-
ellites from different countries to extract 
precipitation from 10 precipitation estima-
tion satellites, and the final product is called 
IMERG. PPS started to implement IMERG 
algorithm version 6 in the spring of 2019. 
IMERG6 is the first release available for the 
TRMM and GPM periods from June 2001. 
Versions 5, 4, and 3 of the IMERG were is-
sued in late 2017, early 2017, and late 2016, 
respectively, and are only available for mil-
itary occupation (April 2014 and later). 
NASA IMERG industry experts indicated that 
the latest version of IMERG is suitable for 
research operations because IMERG V06 is 

Table 1) Characteristics of meteorological stations in the study area.

Average 
precipitation

mm (Average of 
20 years)

 Elevation
(m)

Geographical coordinates
 station
locationStation typeNo

Latitude  Longitude

415.691318.534.3547.15KermanshahAirport synoptic1

468.50134934.1246.47Islamabad-e 
Gharb

Main synoptic

2

412.6354534.4545.87Sarpol Zahab3

406.83146834.547.98Kangavar4

526.41138034.7246.65Ravansar5

356.4137634.5345.6Qasr-e Shirin

 Additional
synoptic

6

426.9281631.1345.93Gilan-e 
Gharb7

560.415137534.7646.5Javanrud8

409.31170034.7847.58Sonqor9

439.5154634.2647.55Harsin10

416.32137034.2846.48Mahidasht11

820.65149435.546.33Paveh
Automatically

12

483.77135034.4847.66Sahneh13

451.661361.734.3347.29Sararud
 Agricultural

 Meteorological
Research

14
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more suitable than other precipitation sat-
ellite products [52]. This model has a spatial 
resolution of 0.1× 0. 1 ° [53]. In its latest ver-
sion, IMERG V06, this model includes lati-
tude and longitude of 90° north and south 
and 180° east and west, including a grid with 
3600 columns for latitude and 1800 rows 
for longitude. IMERG is the most popular 
data model among more than a dozen data 
models associated with the GPM project and 
is represented by PPS at NASA [54]. This sat-
ellite's data from 2001 to 2020 was used in 
this study (Figure 2).

Figure 2). The mean of synoptic stations precipitation 
observations and IMERG precipitation between 2001 
and 2020 were used to validate and intercompare the 
selected Gridded Precipitation Products (GPPs).

Optimal precipitation interpolation methods
Because elevation changes are one of the 
primary variables in the creation of precip-
itation events in a region. Consequently, the 
choice of an interpolation method that can 
accurately predict precipitation is variable 
[55]. This research has analyzed almost four 
known interpolation methods (linear re-
gression, multiple regression, kriging, and 
co-kriging). They were then analyzed based 
on error assessment criteria, and the best 
method was determined from the available 
methods.
Linear regression model
In the gradient method, it is assumed that 
there are different trends in different direc-
tions in the study area, and it is assumed that 

this trend is in the direction of a degree poly-
nomial. In the linear gradient method, and 
should be identical in different directions. 
This average shows that the studied spatial 
variable changes linearity in all directions. 
The spatial variable under investigation is 
assumed to change linearly in all directions. 
The scale of the linear regression approach 
is the number of independent variables [56]. 
These independent variables generally in-
clude two groups of geographic location 
variables (latitude and longitude) and topo-
graphic variables (elevation, amount, and 
direction of slope) Eq. (1). In this study, in 
order to prepare a precipitation map, a lin-
ear regression was formed from the rela-
tionship between precipitation changes and 
elevation. Then, a precipitation map was 
prepared for the study area using a DEM of 
the study area.

P ax b= + Eq. (1)

where a is the width of the source, b is the 
gradient, x is the elevation in m, and P is the 
precipitation of pixels in mm.
Linear multiple regression model
This study used the RML method to create 
multiple linear relationships for precipi-
tation prediction using elevation data and 
IMERG. Multiple regression analysis is used 
when the value of an individual variable can 
be predicted from the values of other vari-
ables.  The overall relationship of the RML 
model for (n) independent variables is pre-
sented in Eq. (2).

1 1 2 2 ..... n nP X X Xβ β β ε= + + + + Eq. (2)

where P represents the dependent vari-
able, X1 to Xn represents the independent 
variables to represent the regression co-
efficients, and ε is a random constant. The 
MiniTab22 software was used in this study 
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to analyze linear and multiple regression 
among the studied variables.
Geostatistical analysis (Kriging and 
Co-Kriging)
Interpolation methods can be divided into 
deterministic interpolation and geostatis-
tical interpolation [57]. Consequently, in this 
research, two methods of kriging (normal, 
single) and co-kriging were used to examine 
and prepare the distribution map. The basis 
of this geostatistical assumption [58] is sum-
marized in Eq. (3).

( ) ( ) ( )X X XP µ ε= + Eq. (3)

Where P(x): variability of precipitation, μ(x): 
(average precipitation), and autocorrelated 
random variation ε (x) at location x [59, 58].
In addition to regular kriging, co-kriging has 
also been used. The most common use of 
co-kriging is when the covariates are more 
accessible and, therefore, denser (or even 
more comprehensive) sampled than the tar-
get variable. Conventional co-kriging inves-
tigates the spatial relations between two or 
more variables by determining their co-loca-
tion [60]. This approach, like multivariate re-
gression, allows various variables to be used 
to assess and improve the spatial precipita-
tion prediction model.

Statistical evaluation - total error
To compare the predicted values with the 
measured data, several criteria are used, 
including correlation coefficient (R), coef-
ficient of determination (R2), root average 
square error (RMSE), and Nash-Sutcliffe 
model efficiency coefficient (NSCE). The 
correlation factor measures the linear cor-
relation between station observations and 
satellite estimates. The Eq. associated with 
the criteria mentioned above is explained in 
Table 2.

Findings
A precipitation map of the province of Ker-
manshah was developed using two standard 
interpolations (Figure 3-A) and regression 
methods (Figure 3-B). The average precipi-
tation for the study area is 469.4 mm using 
the interpolation method and 490.50 mm 
using the regression method. These values 
differ by -1.67 and 19.43 mm from the ac-
tual average of the 14 studied stations, i.e., 
471.07 mm, for the interpolation and regres-
sion methods, respectively. To enhance the 
precipitation gradient and prepare a precip-
itation map, 13 regression equations were 
prepared between precipitation and photo-
graphs and atmospheric variables (Table 3). 
Table (3) presents Precipitation regression 

Figure 3) A precipitation map of Kermanshah province based on the interpolation method (a) and gradient 
method (b).
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equations linearly and multivariate.
Then, using the equation extracted for each 
station, the amount of precipitation was pre-
pared by placing the elevation and the aver-
age pixel point of satellite precipitation and 
soil variables (Table 4). According to Table 
(4), in the models where the precipitation 
variable was extracted based on multiple re-
gressions, the precipitation was more accu-
rately predicted for each station. Models 1, 
2, 6, 7, 11, and 13 could predict precipitation 

for the study area with more precision than 
other predicted models. Model 12 has a high 
R2 coefficient but was rejected because of 
the high ESMN and Nash-Sutcliffe.
One of the primary variables that have made 
the model more accurate is the variability 
of precipitation as a function of longitude 
and latitude (Table 4). In the investigation 
of changes in precipitation caused by ter-
restrial variables of longitude and latitude, 
it was found that the accuracy of the regres-

Table 2) The statistical evaluation indices to evaluate quantitative Rain estimates.

Eq. No.Eq.Metrics

Eq. (4)Correlation coefficient (R)

Eq. (5)R*RCoefficient of determination (R2)

Eq. (6)RMSE

Eq. (7)NSCE

Note: n is the number of observations in the sample; Xi and Yi represent the ith gauge observation and estimates 
data, respectively; X and Y are the corresponding samples’ average values

Table 3) Adjustment of the regression equation for the study area.

Input Variable Regression Eq. Eq. No.

IMERG VO6 Final -379 + 1.684 × IM Eq. (8)
Elevation 382 + 0.0780 × El Eq. (9)
Longitude  2039 - 33.3 × Lon Eq. (10)
Latitude -689 + 34.0 × Lat Eq. (11)
Longitude, Latitude 

1232 - 47.9 × Lon+ 43.4× Lat
Eq. (12)

Longitude  , Latitude , IMERG -459 - 0.8× Lon + 3.8 × Lat + 1.661× IM Eq. (13)
Longitude, Latitude, IMERG, Elevation -187 - 6.7 × Lon + 4.0 × Lat + 1.616 × IM + 0.012 × El Eq. (14)
Longitude, Latitude, Elevation 6611 - 156.5 × Lon + 24.3 × Lat + 0.2903 × El Eq. (15)
Longitude, Elevation 7474 - 157.8 × Lon + 0.3140 × El Eq. (16)
Latitude, Elevation -498 + 26.5 × Lat + 0.0541 × El Eq. (17)
Latitude, IERG -491 + 3.5 × Lat + 1.665 × IM Eq. (18)
Longitude, ERG -427 + 1.0 × Lon + 1.687 × IM Eq. (19)
IMERG, Elevation -380 + 1.677 × IM + 0.0032 × El Eq. (20)
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sion model increases when the latitude is 
combined with satellite images. On the oth-
er hand, longitude, in combination with alti-
tude, predicts precipitation more accurately.
Investigating the spatial changes of pre-
cipitation
In order to check the location of fitted pre-
cipitation models for the study area, point 
precipitation was estimated based on re-
gression models in each station. Then a pre-
cipitation map was prepared based on krig-
ing and co-kriging models (Figures 4 & 5). In 
Figure (3), the maximum spatial distribution 
of precipitation was observed in the north-
ern and central slopes (including Paveh, Ja-
vanrud, Dalahu, and Eslamabad-e Gharb) 
and the least in the western-eastern slopes 
(including Salas Babajani, Qasr-e Shirin, 

Hersin, and Kangavar). In this section, the 
zoned maps were divided into two groups, 
single and multiple variables. This separa-
tion obtains the best possible situation for 
the spatial interpretation of precipitation 
based on the type of image received from 
different regression methods (single-vari-
able and multiple regression).
According to Figure (4), in the spatial distri-
bution of precipitation based on elevation 
regression (El), the maximum precipitation 
has moved to the higher parts of the study 
area, and the minimum precipitation is in 
the western part. When the satellite station 
(IMERG V06) was used to prepare percep-
tion regression, the created perception map 
coincided with the station perception map. 
However, the difference is that the percep-

Figure 4) Spatial distribution of precipitation in Kermanshah province based on single-variable regression and 
Kriging (Elevation (a), IMERG (b), Longitudes (c), Latitude (d)).
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tion obtained from satellite images is less 
intense in low altitude and plain areas. The 
influence of longitude and latitude in the 
study area showed that the longitudes in 
the Zagros highlands effectively influenced 
precipitation. The precipitation is higher in 
the western regions of the province, which 
have shorter latitudes, and the precipitation 
decreases as it goes to higher latitudes (east 
of the region). So Sarpol Zahab has the most 
perception, and Kangavar shows the least 
rainfall.
Nevertheless, in longitudes, this character-
istic is reversed. High longitudes have more 
precipitation, and low longitudes have less 
precipitation. The images prepared for sev-
eral precipitation-affected soil variables 
were predicted with higher spatial accuracy 
than the single variable (Figure 5).
In multiple regression, the spatial distribu-
tion of rainfall is more accurate due to the 
implication of various factors affecting rain-
fall. According to Figure 5, when two factors 
with different characteristics such as terres-

trial and climate variables (Figure 5, a & b) 
are used to prepare the precipitation map, 
precipitation is predicted more accurately. 
To confirm this result, Figure (5, c & d) con-
sists of two terrestrial latitude and longitude 
variables with altitude. Precipitation has an 
inconsistent distribution, so in areas shown 
for longitude and altitude, it is the opposite 
of longitude and latitude s. As a result, the 
spatial precision of precipitation is less than 
the main precipitation map in Figure (3). 
The predicted rainfall has an acceptable ac-
curacy due to its multifactorial nature (Fig-
ures 5e & f).
In general, the preparation of the precipita-
tion maps was based on the average of the 
precipitation extracted and the station's 
height in the form of station points.  Conse-
quently, the precipitation zone is only some-
times accurate in areas with no scattered sta-
tions. In this regard, the 1km precipitation 
map of IMERG V06 satellites was converted 
to a digital pixel size of 27 meters using re-
sample and aggregate commands in ArcGIS 

Table 4) Adjusted model average error values for the Kermanshah meteorological station.

Eq. No. Input Variable RMSE R (XY) NS R2

Eq. (8) IMERG VO6 Final 51.45 0.89 0.78 0.78

Eq. (9) Elevation 103.00 0.35 0.11 0.13

Eq. (10) Longitude  109.33 0.12 0.00 0.02

Eq. (11) Latitude 101.69 0.38 0.13 0.15

Eq. (12) Longitude, Latitude 98.94 0.43 0.18 0.19

Eq. (13) Longitude, Latitude , IMERG 51.05 0.89 0.78 0.79

Eq. (14) Longitude, Latitude, IMERG, Elevation 50.36 0.89 0.79 0.79

Eq. (15) Longitude, Latitude, Elevation 71.81 0.76 0.57 0.58

Eq. (16) Longitude, Elevation 76.55 0.72 0.51 0.51

Eq. (17) Latitude, Elevation 98.72 0.45 0.18 0.20

Eq. (18) Latitude, IMERG 50.56 0.89 0.79 0.79

Eq. (19) Longitude, IMERG 93.95 0.91 0.26 0.81

Eq. (20) IMERG, Elevation 51.12 0.89 0.78 0.79
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10.8.1 software. The longitude and latitude 
maps were also prepared and entered into 
the multiple  regression equation of precip-
itation. In Figure (6), these maps were pre-
pared in the above station forms and pixel 
forms for the study area.

Precipitation was extracted by interpolation 
with the multiple regression method, but 
the map is extracted from the average sta-
tion changes and in point form (Figure 6, a1 
& b1). The averages for each pixel were ob-
tained by multiplying the maps of each vari-

Figure 5) Spatial distribution of precipitation in Kermanshah province based on multiple regression and co-
Kriging (Longitudes+ IMERG (a), latitude + IMERG (b), Longitudes+ Elevation (c), Latitude + Elevation (d), 
Latitude+ Longitudes+IMERG (e), Latitude+ Longitudes+ Elevation (f)).
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able in the adjusted model (Figure 6, a2&b2). 
Figure 7, the gradient diagram shows the ob-
served and projected precipitation from the 
regression Eq.
For the regression analysis of the methods 

used in this research, station interpolation re-
gression and multiple regression were drawn, 
and their results were almost the same and 
similar. In order to determine the best-fitted 
model, the estimated graph and the actual 

 

Figure 6) Spatial distribution of precipitation in Kermanshah province in two ways, interpolation and pixel 
(IMERG + Elevation (a1), Latitude+ Longitudes + Elevation+ IMERG (b1), IMERG + Elevation (a2), Latitude+ 
Longitudes + Elevation+ IMERG (b)).

Figure 7) Regression analysis of different methods of locating precipitation data.
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amount of precipitation were drawn against 
each other, and the line equation for different 
interpolation methods was also fitted to the 
data. According to the equation and the re-
sulting diagram, the best line equation is re-
lated to the four-dimensional gradient meth-
od, which is the closest line to the 1:1 line 
compared to other methods. The regression 
analysis results presented the four dimen-
sions multiple gradient method (Figure 7, b1, 
and b2) as the superior method.

Discussion
This research was conducted to study the 
possibility of combining satellite precipita-
tion products and interpolation methods. 
In addition to verifying the accuracy of the 
IMERG precipitation network data, the ac-
curacy of the proposed method was also 
verified using interpolating methods. The 
precipitation areas of Kermanshah province 
were extracted with linear and multiple re-
gression. In the single-variable approach, 
the models provided were not of acceptable 
accuracy due to the influence of a factor in 
the precipitation estimate (Table 4). Howev-
er, they have high accuracy in multivariable 
models due to the influence of several fac-
tors. Considering that in Kermanshah prov-
ince and the western regions of Iran, precip-
itation enters the country from the west, it 
is expected that the precipitation will be a 
maximum in the western regions.
Nevertheless, the precipitation has concen-
trated in the region's northern and central 
parts, so the minimum amount was observed 
in the Salas Babajani area, and the maximum 
amount was observed in Paveh (Figure 3). In 
this situation, there are two influential fac-
tors: the inappropriate distribution of me-
teorology stations due to the mountainous 
area and the poor performance of IMERG 
satellite observation in mountainous areas, 
which has caused errors in precipitation [61, 

62, 63, 64]. In examining the spatial changes of 

precipitation in all the zoned forms with the 
interpolation method, the maximum pre-
cipitation is concentrated in the mountain-
ous and northern regions of the study area. 
These changes show a better performance of 
interpolation methods in predicting precipi-
tation in mountain areas (Figures 4&5). The 
findings of this research are consistent with 
those of the interpolation studies [65, 66, 67, 68]. 
By examining the location of precipitation 
and comparing single and multiple regres-
sion interpolation methods, it was found 
that the precipitation map, combined with 
terrestrial variables or satellite image data 
in a two-variable manner, is less accurate 
in estimating precipitation. For example, in 
Figure 5, when precipitation or elevation 
alone or combined with one of the terrestri-
al variables, such as longitude and latitude, 
the accuracy of the forecast changed, and the 
precipitation was far from the actual value. 
When combined with the terrestrial bivari-
ate variability, the estimated accuracy is low-
er due to the characteristics of the IMERG 
gauge for recording precipitation (Figure 
6). Thus, it records light and moderate rains 
well but performs poorly in detecting heavy 
rains  [69, 70].  Therefore, recourse to multiple 
regression reduces this influence (Figure 6). 
Because the multiple regression method es-
timates the dependent variability as a func-
tion of correlation and across independent 
variables, it has obtained more acceptable 
results for modeling precipitation at higher 
altitude levels that lack measurement sta-
tions, which is in line with the results of the 
research of Alsafadi et al. [71]. The problem in 
many meteorological studies is the imposi-
tion of precipitation for areas with stations 
to areas without stations, which causes the 
user to make an error in predicting precipi-
tation. Therefore, by combining and placing 
IMERG satellite precipitation maps and ele-
vation, latitude, and longitude in the four-di-
mensional regression equation, a map was 
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prepared that had a coefficient of determi-
nation of 0.79 %, which is more accurate 
than the standard method of estimating pre-
cipitation. Because in the areas that did not 
have a station, precipitation was received 
from satellite images, which increased the 
accuracy of the map, which agrees with the 
results of Zandi et al. [72]. The combination of 
meteorological and advisory data can effec-
tively improve precipitation maps and bet-
ter-predict precipitation for areas without 
stations. Therefore, this method has shown 
high efficiency in improving results, partic-
ularly in estimating annual precipitation, as 
mentioned in several studies [73, 74].

Conclusion
This study was carried out to obtain new 
perception data with high spatial resolu-
tion in areas without stations or with lim-
ited stations and also to determine the best 
approach to integrating statistical methods 
with spatial interpolation analysis in GIS 
software. Two standard interpolation meth-
ods, kriging and regression, and their subset 
were used to estimate precipitation. In this 
study, the use of perception satellite images 
increases the accuracy of interpolation and 
regression methods and reduces errors in 
areas without stations. In order to improve 
the performance of multiple regression 
methods, the combination of high-precision 
IMERG satellite precipitation data obtained 
from GPM was used, and the summary of the 
results is as follows:
• Precipitation data obtained from interpo-
lation methods are acceptable in estimating 
precipitation.
• The multiple regression method combined 
with the interpolation methods increased 
the quality of the estimated precipitation in 
most of the stations studied.
• R2, and NS coefficients had values close to 
one for multiple regressions.
• The use of multiple regression (placing the 

map of influential variables in the model) in-
creased the R2 coefficient.
The R2 coefficient is a source of error in pre-
cipitation estimation.
• The extracted maps show that IMERG prod-
ucts have a high spatial and temporal resolu-
tion to improve and forecast precipitation.
Based on these results, future research 
should focus on error correction and the 
application of precipitation correction to cli-
mate and hydrological studies in the region. 
The results of this study may also help de-
velopers of precipitation improvement algo-
rithms and the microscale scale of climate 
settings.
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