Volume 7, Issue 4 (2019)                   ECOPERSIA 2019, 7(4): 211-221 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yousefi Malekshah M, Ghazavi R, sadatinejad S. Evaluating the Effect of Climate Changes on Runoff and Maximum Flood Discharge in the Dry Area (Case Study: Tehran-Karaj Basin). ECOPERSIA 2019; 7 (4) :211-221
URL: http://ecopersia.modares.ac.ir/article-24-32094-en.html
1- Range & Watershed Management Department, Natural Resources & Earth Sciences Faculty, University of Kashan, Kshan, Iran
2- Range & Watershed Management Department, Natural Resources & Earth Sciences Faculty, University of Kashan, Kshan, Iran , ghazavi@kashanu.ac.ir
3- Renewable Energies and Environmental Engineering Department, New Science & Technologies Faculty, University of Tehran, Tehran
Abstract:   (3583 Views)
Aims: The aim of this study was to the prediction and analysis of temporal pattern changes of runoff, maximum discharge, and Drought indexes in the Tehran-Karaj basin.
Materials & Methods: In this study, the temperature and precipitation data extracted from Statistical Downscaling Model (SDSM; 2021-2050 and 2051-2080) together with observational runoff data of the Sulghan hydrometric station (1986-2015) were used as input data for IHACRES rainfall-runoff model and discharge rate, runoff volume, and maximum discharge were extracted in the desired scales. Then, drought indexes (SPEI and SRI) were investigated.
Findings: In the period of 2021-2050 and 2051-2080, the mean of annual discharge, volume of runoff and annual precipitation will be decreased. While seasonal runoff, discharge, and precipitation will rise in the winter. Moreover, the maximum predicted discharge (In most scenarios) in the return periods less than 5 and more than 50 years is less than the observation period and in the Return Periods of 5 to 50 years it will be more than the observation period. Besides, 48-month SPEI with 48-month SRI (without delay) has a maximum correlation with each other at the level of 99%.
Conclusion: In the winter season and return periods of 5 to 50 years, the floods hazards and Rivers overflow in the Future periods (2021-2080) will be more than the observation period. Also, meteorological droughts often have their effect on the drought of surface waters during the same month.
 
Full-Text [PDF 1087 kb]   (1016 Downloads)    
Article Type: Original Research | Subject: Watershed Management
Received: 2019/04/17 | Accepted: 2019/09/15 | Published: 2019/12/21
* Corresponding Author Address: Range & Watershed Management Department, Natural Resources & Earth Sciences Faculty, University of Kashan, Kshan, Iran. Postal Code: 8731753153

References
1. Phillips J. Evaluating the level and nature of sustainable development for a geothermal power plant. Renew Sustain Energy Rev. 2010;14(8):2414-25. [Link] [DOI:10.1016/j.rser.2010.05.009]
2. IPCC. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge: University Press Cambridge; 2007. pp. 1-18. [Link]
3. Samuels R, Hochman A, Baharad A, Givati A, Levi Y, Yosef Y, et al. Evaluation and projection of extreme precipitation indices in the Eastern Mediterranean based on CMIP5 multi-model ensemble. Int J Climatol. 2017;38(5):2280-97. [Link] [DOI:10.1002/joc.5334]
4. Vicente-Serrano SM, Lopez-Moreno JI. Hydrological response to different time scales of climatological drought: An evaluation of the standardized precipitation index in amountainous Mediterranean basin. Hydrol Earth Syst Sci. 2005;9(5):523-33. [Link] [DOI:10.5194/hess-9-523-2005]
5. Azareh A, Rahdari MR, Rafiei Sardoi E, Azariya Moghadam F. Investigating the relationship between hydrological and meteorological droughts in Karaj dam basin. Euro J Exp Bio. 2014;4(3):102-7. [Link]
6. Tokarczyk T, Szalińska W. Combined analysis of precipitation and water deficit for drought hazard assessment. Hydrol Sci J. 2014;59(9):1675-89. [Link] [DOI:10.1080/02626667.2013.862335]
7. Lweendo MK, Lu B, Wang M, Zhang H, Xu W. Characterization of droughts in humid subtropical region, upper Kafue river basin (southern Africa). Water. 2017;9(4):242. [Link] [DOI:10.3390/w9040242]
8. Bayissa Y, Maskey Sh, Tadesse T, Van Andel S, Moges S, Van Griensven A, et al. Comparison of the performance of six drought indices in characterizing historical drought for the upper Blue Nile basin, Ethiopia. Geosciences. 2018;8(3):81. [Link] [DOI:10.3390/geosciences8030081]
9. Prudhomme Ch, Jakob D, Svensson C. Uncertainty and climate change impact on the flood regime of small UK catchments. J Hydrol. 2003;277(1-2):1-23. [Link] [DOI:10.1016/S0022-1694(03)00065-9]
10. Mirza MM. Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Glob Environ Chang. 2002;12(2):127-38. [Link] [DOI:10.1016/S0959-3780(02)00002-X]
11. Ecstrom M, Fowler H, Kilsby GG, Jones PD. New estimates of future changes in extreme rainfall across the UK using the regional climate model integrations. Future estimates and use in impact studies. J Hydrol. 2005;300(1-4):234-51. [Link] [DOI:10.1016/j.jhydrol.2004.06.019]
12. Wilby RL, Harris I. A framework for assessing uncertainties in climate change impacts: Low‐flow scenarios for the river Thames, UK. Water Resour Res. 2006;42(2):W02419. [Link] [DOI:10.1029/2005WR004065]
13. Carcano EC, Bartolini P, Muselli M, Piroddi L. Jordan recurrent neural network versus IHACRES in modelling daily streamflows. J Hydrol. 2008;362(3-4):291-307. [Link] [DOI:10.1016/j.jhydrol.2008.08.026]
14. Pulido Velazquez D, Garrote L, Andreu J, Martin Carrasco FJ, Iglesias A. A methodology to diagnose the effect of climate change and to identify adaptive strategies to reduce its impacts in conjunctive-use systems at basin scale. J Hydrol. 2011;405(1-2):110-22. [Link] [DOI:10.1016/j.jhydrol.2011.05.014]
15. Cao Duong Ph, Nauditt A, Nam Dh, Tung Phong N. Assessment of climate change impact on river flow regimes in The Red River Delta, Vietnam-A case study of the Nhue-Day River Basin. J Nat Resour Dev. 2016;06:81-91. [Link] [DOI:10.5027/jnrd.v6i0.09]
16. Dobler C, Hagemann S, Wilby RL, Stötter J. Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed. Hydrol Earth Syst Sci. 2012;16(11):4343-60. [Link] [DOI:10.5194/hess-16-4343-2012]
17. Zhu Q, Jiang H, Peng Ch, Liu J, Fang X, Wei X, et al. Effects of future climate change, CO2 enrichment, and vegetation structure variation on hydrological processes in China. Glob Planet Chang. 2012;80-81:123-35. [Link] [DOI:10.1016/j.gloplacha.2011.10.010]
18. Yang W, Long D, Bai P. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in north China. J Hydrol. 2019;570:201-19. [Link] [DOI:10.1016/j.jhydrol.2018.12.055]
19. Gellens D, Roulin E. Streamflow response of Belgian catchments to IPCC climate change scenarios. J Hydrol. 1998;210(1-4):242-58. [Link] [DOI:10.1016/S0022-1694(98)00192-9]
20. Givati A, Thirel G, Rosenfeld D, Paz D. Climate change impacts on streamflow at the upper Jordan river based on an ensemble of regional climate models. J Hydrol Reg Stud. 2019;21:92-109. [Link] [DOI:10.1016/j.ejrh.2018.12.004]
21. Wang H, Xiao W, Wang Y, Zhao Y, Lu F, Yang M, et al. Assessment of the impact of climate change on hydropower potential in the Nanliujiang river basin of China. Energy. 2019;167:950-9. [Link] [DOI:10.1016/j.energy.2018.10.159]
22. Luo M, Liu T, Meng F, Duan Y, Bao A, Xing W, et al. Identifying climate change impacts on water resources in Xinjiang, China. Sci Total Environ. 2019;676:613-26. [Link] [DOI:10.1016/j.scitotenv.2019.04.297]
23. Brunner MI, Sikorska AE, Seibert J. Bivariate analysis of floods in climate impact assessments. Sci Total Environ. 2018;616-617:1392-403. [Link] [DOI:10.1016/j.scitotenv.2017.10.176]
24. Zhang Y, Liu Sh, Hou X, Cheng F, Shen Z. Landscape- and climate change-induced hydrological alterations in the typically urbanized Beiyun river basin, Beijing, China. Stoch Environ Res Risk Assess.2018;33(1):149-68. [Link] [DOI:10.1007/s00477-018-1628-8]
25. Christensen NS, Wood AW, Voisin N, Lettenmaier DP, Palmer RN. The effects of climate change on the hydrology and water resources of the Colorado river basin. Clim Chang. 2004;62(1-3):337-63. [Link] [DOI:10.1023/B:CLIM.0000013684.13621.1f]
26. Kay AL, Jones RG, Reynard NS. RCM rainfall for UK flood frequency estimation. II. climate change results. J Hydrol. 2006;318(1-4):163-72. [Link] [DOI:10.1016/j.jhydrol.2005.06.013]
27. Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, et al. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett. 2011;38(5):L05805. [Link] [DOI:10.1029/2010GL046270]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.