Volume 6, Issue 4 (2018)                   IQBQ 2018, 6(4): 215-223 | Back to browse issues page

XML Print

1- Biology Department, Sciences Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
2- Range & Watershed Management Department, Natural Recourses & Environment Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
3- Biology Department, Sciences Faculty, Ferdowsi University of Mashhad, Mashhad, Iran , abrisham@um.ac.ir
Abstract:   (1093 Views)
Aims: Drought and high temperatures are main environmental stresses for noxious plants in the arid environments. Responses of arid land plants to drought are complicated and include different adaptive mechanisms in terms of physiological, morphological, and phenological responses. This research aimed at investigating phenological and/or morphological responses of two globally important noxious plant species, Centaurea virgata Lam, and Scariola orientalis (Boiss.) Soják, during growth season of a dry year.
Materials & Methods: The present experimental research site was conducted in Noh-Dareh Mountains, Mashhad, Iran. Weekly field visits were done during the growth season (March to September) in 2011. Understory soil moisture and air temperature were recorded together with some morphological plant traits of both species. Daily air temperature and sporadic rainfalls were recorded and their possible effects on changes in plant phenology were investigated. The data were analyzed by SPSS 22 software, using t-test to examine differences in the selected parameters between the two species at each phenological stage.
Findings: Both species produced temporal rosette leaves that favored the high soil moisture in early growth season (March) and led to rapid shoot (stems and cauline leaves) production in the late April. However, they showed contrasting growth strategies in response to rain pulses and summer drought.
Conclusion: C. virgata is a drought escaping and opportunistic plant that threats the native flora during spring of normal and wet years, whereas S. orientalis is a slow growing drought resistant species and can be a major treat both in dry and normal years.
Full-Text [PDF 494 kb]   (254 Downloads)    

Received: 2018/06/2 | Accepted: 2018/11/17 | Published: 2018/11/21
* Corresponding Author Address: Biology Department, Sciences Faculty, Ferdowsi University of Mashhad, Mashhad, Iran

1. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E. Quantifying threats to imperiled species in the United States. Bioscience. 1998;48(8):607-15. [Link] [DOI:10.2307/1313420]
2. Blicker PS, Olson BE, Engel R. Traits of the invasive Centaurea maculosa and two native grasses: Effect of N supply. Plant Soil. 2002;247(2):261-9. [Link] [DOI:10.1023/A:1021596627967]
3. Winner WE, Pell EJ. Response of plants to multiple stresses. Cambridge: Academic Press; 2012. [Link]
4. Jenks MA, Hasegawa PM, editors. Plant abiotic stress. Hoboken: Wiley; 2005. [Link] [DOI:10.1002/9780470988503]
5. Nord EA, Lynch JP. Plant phenology: A critical controller of soil resource acquisition. J Exp Bot. 2009;60(7):1927-37. [Link] [DOI:10.1093/jxb/erp018]
6. Gordo O, Sanz JJ. Phenology and climate change: A long-term study in a Mediterranean locality. Oecologia. 2005;146(3):484-95. [Link] [DOI:10.1007/s00442-005-0240-z]
7. Najafi Tireh Shabankareh K. Phenological study Zygophllum atriplicoides in various relief regions of Hormozgan province. Iran J Range Desert Res. 2004;11(1):83-112. [Persian] [Link]
8. Mirhaji T, Sanadgol A. Study the growth degree days requirement for phenological stages of important range species in Homand. Iran J Range Desert Res. 2007;13(3):212-21. [Persian] [Link]
9. Lo Gullo MA, Salleo S. Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytol. 1988;108(3):267-76. [Link] [DOI:10.1111/j.1469-8137.1988.tb04162.x]
10. Li C, Wang K. Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. populations. For Ecol Manag. 2003;179(1-3):377-85. [Link]
11. Lei Y, Yin C, Li C. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiologia Plantarum. 2006;127(2):182-91. [Link] [DOI:10.1111/j.1399-3054.2006.00638.x]
12. Gebauer RLE, Schwinning S, Ehleringer JR. Interspecific competition and resource pulse utilization in a cold desert community. Ecology. 2002;83(9):2602-16. [Link] [DOI:10.1890/0012-9658(2002)083[2602:ICARPU]2.0.CO;2]
13. Schwinning S, Sala OE. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia. 2004;141(2):211-20. [Link] [DOI:10.1007/s00442-004-1520-8]
14. Rickey MA, Anderson RC. Effects of nitrogen addition on the invasive grass Phragmites australis and a native competitor Spartina pectinata. J Appl Ecol. 2004;41(5):888-96. [Link] [DOI:10.1111/j.0021-8901.2004.00948.x]
15. Mozzafarian V. Plant Systematics. 4th ed. Tehran: Amirkabir Press; 2005. p. 210. [Link]
16. Safavi SR, Naseh Y, Jafari E, Tavakoli Z, Heidarnia N. Flora of Iran, Asteraceae Tribe Cichorieae. Asadi M, Maesoomi AA, Mozaffariyan V, Safavi SR, editors. Tehran: Research Institute of Forests and Rangelands; 2013. [Persian] [Link]
17. Hosseini SA. Access to climate data and history [Internet]. Tehran: Iranian Comprehensive Climate and Climate Website; 2014 [cited 2017 Jul 17]. Available from: http://climatology.ir/?p=4729. [Persian] [Link]
18. E Weatherley P. Studies in the water relations of the cotton plant. New Phytol. 1950;49(1):81-97. [Link] [DOI:10.1111/j.1469-8137.1950.tb05146.x]
19. Fitter AH, Fitter RSR, Harris ITB, Williamson MH. Relationships between first flowering date and temperature in the flora of a locality in Central England. Funct Ecol. 1995;9(1):55-60. [Link] [DOI:10.2307/2390090]
20. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, et al. European phenological response to climate change matches the warming pattern. Glob Chang Biol. 2006;12(10):1969-76. [Link] [DOI:10.1111/j.1365-2486.2006.01193.x]
21. Jankju-Borzelabad M, Griffiths H. Competition for pulsed resources: An experimental study of establishment and coexistence for an arid-land grass. Oecologia. 2006;148(4):555-63. [Link] [DOI:10.1007/s00442-006-0408-1]
22. Schwinning S, Ehleringer JR. Water use trade‐offs and optimal adaptations to pulse‐driven arid ecosystems. J Ecol. 2001;89(3):464-80. [Link] [DOI:10.1046/j.1365-2745.2001.00576.x]
23. Bertiller MB, Beeskow AM, Coronato FR. Seasonal environmental variation and plant phenology in arid Patagonia (Argentina). J Arid Environ. 1991;21(1):1-12. [Link] [DOI:10.1016/S0140-1963(18)30722-5]
24. Ogaya R, Pe-uelas J. Phenological patterns of Quercus ilex, Phillyrea latifolia, and Arbutus unedo growing under a field experimental drought. Écoscience. 2004;11(3):263-70. [Link] [DOI:10.1080/11956860.2004.11682831]
25. Prieto P, Pe-uelas J, Ogaya R, Estiarte M. Precipitation-dependent flowering of Globularia alypum and Erica multiflora in Mediterranean shrubland under experimental drought and warming, and its inter-annual variability. Ann Bot. 2008;102(2):275-85. [Link] [DOI:10.1093/aob/mcn090]
26. Morales CG, Pino MT, De Pozo A. Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars. Scientia Horticulturae. 2013;162:234-41. [Link] [DOI:10.1016/j.scienta.2013.07.025]
27. Ihsan MZ, El-Nakhlawy FS, Ismail SM, Fahad S, Daur I. Wheat phenological development and growth studies as affected by drought and late season high temperature stress under arid environment. Front Plant Sci. 2016;7:795. [Link] [DOI:10.3389/fpls.2016.00795]
28. Basubas D. Variation in flowering patterns and flowering phenology in alpine cushion plants in response to microclimate [Dissertation]. Dunedin: University of Otago; 2016. [Link]
29. Dobbertin M, Eilmann B, Bleuler P, Giuggiola A, Graf Pannatier E, Landolt W, et al. Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol. 2010;30(3):346-60. [Link] [DOI:10.1093/treephys/tpp123]
30. Tongo A, Mahdavi A, Sayad E. Effect of superabsorbent polymer aquasorb on chlorophyll, antioxidant enzymes and some growth characteristics of Acacia victoriae seedlings under drought stress. Ecopersia. 2014;2(2):571-83. [Link]
31. Avramova V, Abd Elgawad H, Zhang Z, Fotschki B, Casadevall R, Vergauwen L, et al. Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol. 2015;169(2):1382-96. [Link] [DOI:10.1104/pp.15.00276]
32. Salomé PA, Bomblies K, Laitinen RA, Yant L, Mott R, Weigel D. Genetic architecture of flowering-time variation in Arabidopsis thaliana. Genetics. 2011;188(2):421-33. [Link] [DOI:10.1534/genetics.111.126607]
33. Maes WH, Achten WMJ, Reubens B, Raes D, Samson R, Muys B. Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. J Arid Environ. 2009;73(10):877-84. [Link] [DOI:10.1016/j.jaridenv.2009.04.013]
34. Nilsen E, Sharifi M. Carbon isotopic composition of legumes with photosynthetic stems from Mediterranean and desert habitats. Am J Bot. 1997;84(12):1707. [Link] [DOI:10.2307/2446469]
35. Karamanos AJ. Water stress and leaf growth of field beans (Vicia faba L.) in the field: Leaf number and total leaf area. Ann Bot. 1978;42(6):1393-402. [Link] [DOI:10.1093/oxfordjournals.aob.a085586]
36. Ahani H, Jalilvand H, Vaezi J, Sadati SE. Physiological response of sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) to water-use strategies. Ecopersia. 2014;2(3):681-95. [Link]