Volume 6, Issue 3 (2018)                   IQBQ 2018, 6(3): 163-169 | Back to browse issues page

XML Print

1- Fisheries Department, Natural Resources & Environmental Faculty, Malayer University, Malayer, Iran
2- Fisheries Department, Natural Resources Faculty, University of Tehran, Karaj, Iran , bmamiri@ut.ac.ir
3- Fisheries Department, Natural Resources Faculty, University of Tehran, Karaj, Iran
Abstract:   (238 Views)
Aims: The phytoestrogen, genistein and β-sitosterol, naturally occurring compounds found in soy products and pulp and paper mill effluent, respectively, could act as endocrine disrupting compounds (EDC) in the environment. The aim of this study was to evaluate the effects of β-sitosterol and genistein on the early life stages of Kutum (Rutilus kutum), specifically developing post-fertilized embryos.
Materials and Methods: In this experimental study, Kutum’s fertilized egg exposed to 3 different levels of genistein and β-sitosterol (10, 50, 500ng.l-1, respectively) up to 7 days post-fertilization (dpf). At the end of the research period, newly hatched larvae were sampled and testosterone (T), 17β-estradiol (E2), Aromatase and ethoxyresorufin-O-deethylase (EROD) were measured according to standard protocols. One-way analysis of variance (ANOVA), Duncan multiple range test and SPSS 17 software were used for data analyses.
Findings: A high level of genistein lead to increased 17β-estradiol, testosterone concentration and aromatase activity. Also, β-sitosterol treated embryos (500ng.l-1) showed a high level of testosterone and EROD as compared to the control group. While other treatment had no significant effect.
Conclusion: It seems that β-sitosterol and genistein could effect on the endocrine system of Kutum embryos by altering steroid biosynthesis and disturb enzyme activity. So it could lead to change the population structure and reduce reproduction performance of Kutum in the long period.
Full-Text [PDF 355 kb]   (40 Downloads)    
Article Type: مقاله Ø§Ø³ØªØ®Ø±Ø§Ø Ø´Ø¯Ù‡ از پایان نامه |
Received: 2018/06/2 | Accepted: 2018/07/17 | Published: 2018/08/25
* Corresponding Author Address: Fisheries Sciences Department, Natural Resources Faculty, University of Tehran, Karaj, Iran. Postal Code: 3158777871

1. Liu ZH, Kanjo Y, Mizutani S. A review of phytoestrogens: Their occurrence and fate in the environment. Water Res. 2010;44(2):567-77. [Link] [DOI:10.1016/j.watres.2009.03.025]
2. Latonnelle K, Le Menn F, Kaushik SJ, Bennetau-Pelissero C. Effects of dietary phytoestrogens in vivo and in vitro in rainbow trout and Siberian sturgeon: Interests and limits of the in vitro studies of interspecies differences. Gen Comp Endocrinol. 2002;126(1):39-51. [Link] [DOI:10.1006/gcen.2001.7773]
3. Kiparissis Y, Balch GC, Metcalfe TL, Metcalfe CD. Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka Oryzias latipes. Environ Health Perspect. 2003;111(9):1158-63. [Link] [DOI:10.1289/ehp.5928]
4. Green CC, Kelly AM. Effects of the estrogen mimic genistein as a dietary component on sex differentiation and ethoxyresorufin-O-deethylase (EROD) activity in channel catfish (Ictalurus punctatus). Fish Physiol Biochem. 2009;35(3):377-84. [Link] [DOI:10.1007/s10695-008-9260-z]
5. Zhang L, Khan IA, Willett KL, Foran CM. In vivo effects of black cohosh and genistein on estrogenic activity and lipid peroxidation in Japanese medaka (Oryzias latipes). J Herb Pharmacother. 2003;3(3):33-50. https://doi.org/10.1080/J157v03n03_04 [Link] [DOI:10.1300/J157v03n03_04]
6. MacLatchy D, Peters L, Nickle J, Van Der Kraak G. Exposure to β-sitosterol alters the endocrine status of goldfish differently than 17β-estradiol. Environ Toxicol Chem. 1997;16(9):1895-1904. [Link] [DOI:10.1002/etc.5620160919]
7. Sharpe RL, Drolet M, MacLatchy DL. Investigation of de novo cholesterol synthetic capacity in the gonads of goldfish (Carassius auratus) exposed to the phytosterol beta-sitosterol. Reprod Biol Endocrinol. 2006;4:60. [Link] [DOI:10.1186/1477-7827-4-60]
8. Kuster M, Azevedo DA, López De Alda MJ, Aquino Neto FR, Barceló D. Analysis of phytoestrogens, progestogens and estrogens in environmental waters from Rio de Janeiro (Brazil). Environ Int. 2009;35(7):997-1003. [Link] [DOI:10.1016/j.envint.2009.04.006]
9. Kalbassi MR, Abdollahzadeh E, Salari Joo H. A review on aquaculture development in Iran. Ecopersia. 2013;1(2):159-78. [Link]
10. Jafari M, Kamarudin MS, Saad CR, Arshad A, Oryan Sh, Bahmani M. Development of morphology in hatchery-reared Rutilus frisii kutum Larvae. Eur J Sci Res. 2009;38(2):296-305. [Link]
11. Orrego R, McMaster M, Van Der Kraakc G, Holdway D. Effects of pulp and paper mill effluent extractives on aromatase CYP19a gene expression and sex steroid levels in juvenile triploid rainbow trout. Aquat Toxicol. 2010;97(4):353-60. [Link] [DOI:10.1016/j.aquatox.2010.01.002]
12. Karimzadeh K, Mostafaee A, Zahmatkesh A. Detection of cytochrome P450 1A content exposed to Polycyclic Aromatic Hydrocarbons (PAHs) in two species of sturgeon. World J Fish Mar Sci. 2012;4(6):604-8. [Link]
13. Annino JS, Giese RW. Clinical chemistry principles and procedures. 4th Edition. New York: Little, Brown; 1976. [Link]
14. Brown AC, Stevenson LM, Leonard HM, Nieves-Puigdoller K, Clotfelter ED. Phytoestrogens β-sitosterol and genistein have limited effects on reproductive endpoints in a female fish Betta splendens. BioMed Res Int. 2014;2014:681396. [Link]
15. An J, Tzagarakis-Foster C, Scharschmidt TC, Lomri N, Leitman DC. Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem. 2001;276(21):17808-14. [Link] [DOI:10.1074/jbc.M100953200]
16. Lehtinen KJ, Mattsson K, Tana J, Engström C, Lerche O, Hemming J. Effects of wood-related sterols on the reproduction, egg survival, and offspring of brown trout (Salmo trutta lacustris L.). Ecotoxicol Environ Saf. 1999;42(1):40-9. [Link] [DOI:10.1006/eesa.1998.1724]
17. Maclatchy DL, Van Der kraak GJ. The phytoestrogen beta-sitosterol alters the reproductive endocrine status of goldfish. Toxicol Appl Pharmacol. 1995;134(2):305-12. [Link] [DOI:10.1006/taap.1995.1196]
18. Mellanen P, Petänen T, Lehtimäki J, Mäkelä S, Bylund G, Holmbom B. Wood-derived estrogens: Studies in vitro with breast cancer cell lines and in vivo in trout. Toxicol Appl Pharmacol. 1996;136(2):381-8. [Link] [DOI:10.1006/taap.1996.0046]
19. Tremblay L, Van Der Kraak G. Use of a series of homologous in vitro and in vivo assays to evaluate the endocrine modulating actions of β-sitosterol in rainbow trout. Aquat Toxicol. 1998;43(2-3):149-62. [Link] [DOI:10.1016/S0166-445X(98)00051-4]
20. Leusch, FDL, MacLatchy DL. In vivo implants β-sitosterol cause reductions of reactive cholesterol pools in mitochondria isolated from gonads of male goldfish (Carassius auratus). Gen Comp Endocrinol, 2003;134(3):255-63. [Link] [DOI:10.1016/S0016-6480(03)00265-X]
21. Flinders CA, Streblow WR, Philbeck RE, Cook DL, Campbell DE, Brown-Peterson NJ, et al. Fathead minnow response to broad-range exposure of β-sitosterol concentrations during life-cycle testing. Environ Toxicol Chem. 2014;33(2):458-67. [Link] [DOI:10.1002/etc.2440]
22. Nakari T, Erkomaa K. Effects of phytosterols on zebrafish reproduction in multigeneration test. Environ Pollut. 2003;123(2):267-73. [Link] [DOI:10.1016/S0269-7491(02)00377-9]
23. Teather K, Parrott J. Assessing the chemical sensitivity of freshwater fish commonly used in toxicological studies. Water Qual Res J. 2006;41(1):100-5. [Link] [DOI:10.2166/wqrj.2006.011]
24. Slooff W, Van Oers JAM, De Zwart D. Margins of uncertainty in ecotoxicological hazard assessment. Environ Toxicol Chem. 1986;5(9):841-52. [Link] [DOI:10.1002/etc.5620050909]
25. Cheshenko K, Pakdel F, Segner H, Kah O, Eggen RI. Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. Gen Comp Endocrinol. 2008;155(1):31-62. [Link] [DOI:10.1016/j.ygcen.2007.03.005]
26. Kishida M, Callard GV. Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development. Endocrinology. 2001;142(2):740-50. [Link] [DOI:10.1210/endo.142.2.7928]
27. Trant JM, Gavasso S, Ackers J, Chung BC, Place AR. Developmental expression of cytochrome P450 aromatase genes (CYP19a and CYP19b) in zebrafish fry (Danio rerio). J Exp Zool. 2001;290(5):475-83. [Link] [DOI:10.1002/jez.1090]
28. Iwamatsu T, Kobayashi H, Sagegami R, Shuo T. Testosterone content of developing eggs and sex reversal in the medaka (Oryzias latipes). Gen Comp Endocrinol. 2006;145(1):67-74. [Link] [DOI:10.1016/j.ygcen.2005.07.003]
29. Feist G, Schreck CB, Fitzpatrick MS, Redding JM. Sex steroid profiles of coho salmon (Oncorhynchus kisutch) during early development and sexual differentiation. Gen Comp Endocrinol. 1990;80(2):299-313. [Link] [DOI:10.1016/0016-6480(90)90174-K]
30. Bucheli TD, Fent K. Induction of cytochrome P450 as a biomarker for environmental contamination in aquatic ecosystems. Crit Rev Environ Sci Technol. 1995;25(3):201-68. [Link] [DOI:10.1080/10643389509388479]
31. Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE. Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit Rev Toxicol. 2000:30(4):347-570. [Link] [DOI:10.1080/10408440091159239]
32. Hodson PV. Mixed function oxygenase induction by pulp mill effluents: Advances since 1991. In: Servos MR. Environmental fate and effects of pulp and paper: Mill effluents. Boca Raton: CRC Press; 1996. [Link]
33. Martel PH, Kovacs TG, O'Connor BI, Voss RH. Source and identity of compounds in a thermomechanical pulp mill effluent inducing hepatic mixed-function oxygenase activity in fish. Environ Toxicol Chem. 1997;16(11):2375-83. [Link] [DOI:10.1002/etc.5620161125]