Volume 9, Issue 3 (2021)                   ECOPERSIA 2021, 9(3): 191-205 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yousuf A, Bhardwaj A, Prasad V. Simulating the Impact of Conservation Interventions on Runoff and Sediment Yield in a Degraded Watershed Using the WEPP Model. ECOPERSIA 2021; 9 (3) :191-205
URL: http://ecopersia.modares.ac.ir/article-24-47895-en.html
1- Department of Soil and Water Engineering, Punjab Agricultural University, Ludhiana, India , er.aywani@pau.edu
2- Department of Soil and Water Engineering, Punjab Agricultural University, Ludhiana, India
Abstract:   (1947 Views)
Aims: The present study aimed to use the WEPP model to simulate the impact of various conservation interventions on runoff and sediment yield and determine the optimum areal extent of a watershed to be treated economically.
Materials & Methods: The study watershed (located in the Shivalik region of North-West India) was divided into various hillslopes and channels. The input files required to run the WEPP model were prepared for each hillslope and channel. The WEPP model was calibrated and validated by using monitored hydrological data (2015-2019). The impact of check dams and sedimentation basins, individually and in combination, on runoff, sediment yield, and sediment delivery ratio was simulated.
Findings: The simulation results indicated that channel erosion is predominant in the watershed, and check dams are more efficient in controlling runoff and sediment yield than sedimentation basins. However, the coupled implementation of both interventions was much more effective than the individual implementation of each intervention. The simulated runoff and sediment yield decreased by 72% and 90%, respectively, with a significant reduction of about 95% in sediment delivery ratio (SDR) compared to the untreated watershed. The results further revealed that treating 66% of the watershed area with both the interventions can be considered as an optimum area that should be treated.
Conclusions: In the absence of any recommendations for implementing management interventions in the Shivalik region of India, the results of the present study would serve as guidelines for treating degraded watersheds for their rehabilitation under limited financial resources.
Full-Text [PDF 732 kb]   (755 Downloads)    
Article Type: Original Research | Subject: Soil Conservation and Management
Received: 2020/11/28 | Accepted: 2020/12/29 | Published: 2021/05/11
* Corresponding Author Address: Department of Soil and Water Engineering, Punjab Agricultural University, Ludhiana, India

References
1. Gashu K, Muchie Y. Rethink the interlink between land degradation and livelihood of rural communities in Chilga district, Northwest Ethiopia. J Ecol Environ. 2018;42:17. [Link] [DOI:10.1186/s41610-018-0077-0]
2. Ganasri BP, Ramesh H. Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geosci Front. 2016;7(6):953-61. [Link] [DOI:10.1016/j.gsf.2015.10.007]
3. Bashagaluke JB, Logah V, Opoku A, Sarkodie-Addo J, Quansah C. Soil nutrient loss through erosion: Impact of different cropping systems and soil amendments in Ghana. PLoS One. 2018;13(12):e0208250. [Link] [DOI:10.1371/journal.pone.0208250]
4. Sivakumar MVK. Interactions between climate and desertification. Agric For Meteorol. 2007;142(2-4):143- 55. [Link] [DOI:10.1016/j.agrformet.2006.03.025]
5. Brevik EC. Soils and human health- an overview. In: Brevik EC, Burgess LC, editors. Soils and human health. Boca Raton: CRC Press; 2012. [Link] [DOI:10.1201/b13683]
6. Lal R. Soil erosion and the global carbon budget. Environ Int. 2003;29(4):437-50. [Link] [DOI:10.1016/S0160-4120(02)00192-7]
7. Sartori M, Philippidis G, Ferrari E, Borrelli P, Lugato E, Montanarella L, et al. A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion. Land Use Policy. 2019;86:299-312. [Link] [DOI:10.1016/j.landusepol.2019.05.014]
8. Ananda J, Herath G. The use of analytic hierarchy process into regional forest planning. For Policy Econ. 2003;5(1):13-26. [Link] [DOI:10.1016/S1389-9341(02)00043-6]
9. Arabkhedri M, Mahmoodabadi M, Taghizadeh Sh, Zoratipour A. Causes of severe erosion in a clayey soil under rainfall and inflow simulation. ECOPERSIA. 2018;6(4):225-33. [Link]
10. Ali KF, Boer DH. Spatially distributed erosion and sediment yield modeling in the upper Indus River basin. Water Resour Res. 2010;46:W08504. [Link] [DOI:10.1029/2009WR008762]
11. McCool DK, Williams JD. Soil erosion by water. In: Jorgensen SE, Fath BD, editors. Encyclopaedia of ecology. Netherlands: Elsevier; 2008. [Link] [DOI:10.1016/B978-008045405-4.00296-2]
12. Sidhu GS, Walia CS, Sachdev CB, Rana KPC, Dhankar RP, Singh SP, et al. Soil resource of NW Shivaliks for prospective land use planning. In: Mittal SP, Aggarwal RK, Samra JS, editors. Fifty years of research on sustainable resource management in Shivaliks. India: Central Soil & Water Conservation Research and Training Institute, Research Centre Chandigarh; 2000. [Link]
13. Bhardwaj A, Kaushal MP. Two- dimensional physically based finite element runoff model for small agricultural watershed: I. Model development. Hydrol Process. 2011;23(3):397-407. [Link] [DOI:10.1002/hyp.7150]
14. Singh RK, Panda RK, Satapathy KK, Ngachan SV. Simulation of runoff and sediment yield from a hilly watershed in the eastern Himalaya, India using the WEPP model. J Hydrol. 2011;405(3-4):261-76. [Link] [DOI:10.1016/j.jhydrol.2011.05.022]
15. Mullan D, Favis- Mortlock D, Fealy R. Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agric For Meteorol. 2012;156:18-30. [Link] [DOI:10.1016/j.agrformet.2011.12.004]
16. Nearing MA, Pruski FF, O'Niel MR. Expected climate change impacts on soil erosion rates: A review. J Soil Water Conserv. 2004;59(1):43-50. [Link]
17. Routschek A, Schmidt J, Kreienkamp F. Impact of climate change on soil erosion- A high- resolution projection on catchment scale until 2100 in Saxony/Germany. CATENA. 2014;121:99-109. [Link] [DOI:10.1016/j.catena.2014.04.019]
18. Chatrsimab Z, Ghavimi- Panah MH, Vafaeinejad AR, Hazbavi Z, Boloori S. Prioritizing of the sub- watersheds using the soil loss cost approach (A Case Study; Selj- Anbar Watershed, Iran). ECOPERSIA. 2019;7(3):161-68. [Link]
19. Sivapalan M. Prediction in ungauged basins: A grand challenge for theoretical hydrology. Hydrol Process. 2003;17:3163-70. [Link] [DOI:10.1002/hyp.5155]
20. Revilla- Romero B, Beck HE, Burek P, Pa S, Roo A, Thielen J. Filling the gaps: Calibrating a rainfall- runoff model using satellite- derived surface water extent. Remote Sens Environ. 2015;171:118-31. [Link] [DOI:10.1016/j.rse.2015.10.022]
21. Sahoo N, Panigrahi B, Das DM, Das DP. Simulation of runoff in Baitarani basin using composite and distributed curve number approaches in HEC- HMS model. MAUSAM. 2020;71:675-86. [Link]
22. Beasley DB, Huggins LF, Monke EJ. ANSWERS: A model for watershed planning. Trans ASAE. 1980;23(4):0938-44. [Link] [DOI:10.13031/2013.34692]
23. Young RA, Onstad CA, Bosch DD, Anderson WP. AGNPS: A nonpoint source pollution model for evaluating agricultural watersheds. J Soil Water Conserv. 1987;44(2):168-73. [Link]
24. Abbot MB, Bathrust JC, Cunge JA, O'Connell PE, Rasmussen J. An introduction to the European Hydrological System- Systeme Hydrologique Europeen, "SHE", 1: History and philosophy of a physically- based, distributed modelling system. J Hydrol. 1986;87(1-2):45-59. [Link] [DOI:10.1016/0022-1694(86)90114-9]
25. Nearing MA, Ascough LD, Laflen JM. Sensitivity analysis of the WEPP hillslope profile erosion model. Trans ASAE. 1990;33(3):839-49. [Link] [DOI:10.13031/2013.31409]
26. Morgan RPC, Quinton JN, Smith RE, Govers G, Poesen JWA, Auerswald K, et al. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf Process. 1998;23(6):527- 44. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5 [Link] [DOI:10.1002/(SICI)1096-9837(199806)23:63.0.CO;2-5]
27. Knisel WG. CREAMS: A field- scale model for chemicals, runoff, and erosion from agricultural management systems, USDA conservation Research Report No. 26. Washington: USDA- ARS; 1995. [Link]
28. Smith RE, Goodrich DC, Woolhiser DA, Unkrich CL. KINEROS- A kinematic runoff and erosion model. In: Singh VJ, editor. Computer Models of watershed hydrology. Colorado: Water Resources Publications; 1995. [Link]
29. De Roo A, Jetten V, Wesseling C, Ritsema C. LISEM: A physically- based hydrologic and soil erosion catchment model. In: Boardman J, Favis- Mortlock D, editors. Modelling soil erosion by water. Proceedings of the NATO Advanced Research Workshop "Global Change, Modelling Soil Erosion by Water", Held at the University of Oxford, September 11-14, 1995. Heidelberg: Springer; 1998. [Link] [DOI:10.1007/978-3-642-58913-3_32]
30. Slaymaker O. Towards the identification of scaling relations in drainage basin sediment budgets. Geomorphology. 2006;80(1-2):8-19. [Link] [DOI:10.1016/j.geomorph.2005.09.004]
31. Pandey A, Chowdary VM, Mal BC, Billib M. Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model. J Hydrol. 2008;348(3-4):305- 19. [Link] [DOI:10.1016/j.jhydrol.2007.10.010]
32. Shen Z, Gong Y, Li Y, Liu R. Analysis and modeling of soil conservation measures in the three gorges reservoir area in China. CATENA. 2010;81(2):104-12. [Link] [DOI:10.1016/j.catena.2010.01.009]
33. Akbari A, Sedaei L, Naderi M, Samah AA, Sedaei N. The application of the Water Erosion Prediction Project (WEPP) model for the estimation of runoff and sediment on a monthly time resolution. Environ Earth Sci. 2015;74:5827-37. [Link] [DOI:10.1007/s12665-015-4600-7]
34. Sharma SP, Bhardwaj A. Runoff quantification from small non- arable rangeland watershed in Shivalik foot- hills using WEPP model. J Indian Water Resour Soc. 2017;37:25-36. [Link]
35. Yousuf A, Bhardwaj A, Tiwari AK, Bhatt VK. Simulation of runoff and sediment yield from a forest micro watershed in Shivalik foothills using WEPP Model. Indian J Soil Conserv. 2017;45(1):21-7. [Link]
36. Sushanth K, Bhardwaj A. Assessment of landuse change impact on runoff and sediment yield of Patiala- Ki- Rao watershed in Shivalik foot- hills of northwest India. Environ Monit Assess. 2019;191(12):757. [Link] [DOI:10.1007/s10661-019-7932-z]
37. Renschler CS. Designing geo-spatial interfaces to scale process models: the GeoWEPP approach. Hydrol Process. 2003;17(5):1005-17. [Link] [DOI:10.1002/hyp.1177]
38. Schultz KM. Modeling road erosion in upper Torreon Wash, New Mexico. Transp Res Rec. 2011;2203(1):27-35. [Link] [DOI:10.3141/2203-04]
39. Flanagan DC, Livingston SJ. USDA Water Erosion Prediction Project; NSERL Report No. 11. West Lafayette: USDA- ARS National Soil Erosion Research Laboratory; 1995. [Link]
40. Nash JE, Sutcliffe JV. River flow forecasting through conceptual models. Part 1: A discussion of principles. J Hydrol. 1970;10(3):282-90. [Link] [DOI:10.1016/0022-1694(70)90255-6]
41. Fu B, Wang Y, Xu P, Yan K. Assessment of the performance of WEPP in purple soil area with simulated rainfall experiments. J Mountain Sci. 2012;9:570- 79. [Link] [DOI:10.1007/s11629-012-2194-z]
42. Yousuf A, Bhardwaj A, Tiwari AK, Bhatt VK. Modelling runoff and sediment yield from a small watershed in Shivalik foot- hills using WEPP model. Int J Agric Sci Res. 2015;5:67- 78. [Link]
43. Han F, Ren L, Zhang X, Li Z. The WEPP model application in a small watershed in the Loess Plateau. PLoS One. 2016;11(3):e0148445. [Link] [DOI:10.1371/journal.pone.0148445]
44. Nearing MA. Why soil erosion models over-predict small soil losses and under- predict large soil losses. CATENA. 1998;32(1):15-22. [Link] [DOI:10.1016/S0341-8162(97)00052-0]
45. Covert SA, Robichaud PR, Elliot WJ, Link TE. Evaluation of runoff prediction from WEPP- based erosion models for harvested and burned forest watersheds. Trans ASAE. 2005;48(3):1091-100. [Link] [DOI:10.13031/2013.18519]
46. Dun S, Wu JQ, Elliot WJ, Robichaud PR, Flanagan DC, Frankenberger JR, et al. Adapting the Water Erosion Prediction Project (WEPP) model for forest applications. J Hydrol. 2009;336(1-4):46-54. [Link] [DOI:10.1016/j.jhydrol.2008.12.019]
47. Saghafian B, Meghdadi AR, Sima S. Application of the WEPP model to determine sources of run- off and sediment in a forested watershed. Hydrol Process. 2015;29(4):481-97. [Link] [DOI:10.1002/hyp.10168]
48. Hartman BD, Bookhagen D, Chadwick OA. The effects of check dams and other erosion control structures on the restoration of Andean bofedal ecosystems. Restor Ecol. 2016;24(6):761-72. [Link] [DOI:10.1111/rec.12402]
49. Mekonnen M, Keesstra SD, Baartman JEM, Ritsema CJ, Melesse AM. Evaluating sediment storage dams: Structural off- site sediment trapping measures in northwest Ethiopia. Cuad de Investig Geogr. 2015;41:7-22. [Link] [DOI:10.18172/cig.2643]
50. Li E, Mu X, Zhao G, Gao P, Sun W. Effects of check dams on runoff and sediment load in a semi-arid river basin of the Yellow river. Stoch Environ Res Risk Assess. 2016;31:1791-803. [Link] [DOI:10.1007/s00477-016-1333-4]
51. Yuan S, Li Z, Xu G, Gao H, Xiao L, Wang F, et al. Influence of check dams on flood and erosion dynamic processes of a small watershed in the Loss Plateau. Water. 2019;11(4):834. [Link] [DOI:10.3390/w11040834]
52. Millen JA, Jarrett AR, Faircloth JW. Experimental evaluation of sedimentation basin performance for alternative dewatering systems. Trans ASAE. 1997;40(4):1087-95. [Link] [DOI:10.13031/2013.21361]
53. McCaleb MM, McLaughlin RA. Sediment trapping by five different sediment detention devices on construction sites. Trans ASABE. 2008;51(5):1613-21. [Link] [DOI:10.13031/2013.25318]
54. Kang J, King SE, McLaughlin RA. Impacts of flocculation on sediment basin performance and design. Trans ASAE. 2014;57(4):1099-107. [Link] [DOI:10.13031/trans.57.10652]
55. Fang X, Zech WC, Logan CP. Stormwater field evaluation and its challenges of a sediment basin with skimmer and baffles at a highway construction site. Water. 2015;7(7):3407-30. [Link] [DOI:10.3390/w7073407]
56. Fiener P, Auerswald K, Weigand S. Managing erosion and water quality in agricultural watersheds by small detention ponds. Agric Ecosyst Environ. 2005;110(3):132-42. [Link] [DOI:10.1016/j.agee.2005.03.012]
57. Sahoo DC, Madhu MG, Bosu SS, Khola OPS. Farming methods impact on soil and water conservation efficiency under tea plantation in Nilgiris of South India. Int Soil Water Conserv Res. 2016;4(3):195-98. [Link] [DOI:10.1016/j.iswcr.2016.07.002]
58. Sultan D, Tsunekawa A, Haregeweyn N, Adgo E, Tsubo M, Meshesha DT, et al. Impact of soil and water conservation interventions on watershed runoff response in a tropical humid highland of Ethiopia. Environ Manag. 2018;61(5):860-74. [Link] [DOI:10.1007/s00267-018-1005-x]
59. Taye G, Poesen J, Wesemael BV, Vanmaercke M, Teka D, Deckers J, et al. Effects of land use, slope gradient, and soil and water conservation structures on runoff and soil loss in semi- arid Northern Ethiopia. Phys Geogr. 2013;34(3):236- 59. [Link] [DOI:10.1080/02723646.2013.832098]
60. Addisu S, Mekonnen M. Check dams and storages beyond trapping sediment, carbon sequestration for climate change mitigation, Northwest Ethiopia. Geoenviron Disasters. 2019;6:4. [Link] [DOI:10.1186/s40677-019-0120-1]
61. Mekonnen M, Getahun M. Soil conservation practices contribution in trapping sediment and soil organic carbon, Minizr watershed, northwest highlands of Ethiopia. J Soils Sediments. 2020;20:2484-94. [Link] [DOI:10.1007/s11368-020-02611-5]
62. Wang G, Mang S, Cai H, Liu S, Zhang Z, Wang L, et al. Integrated watershed management: evolution, development and emerging trends. J For Res. 2016;27:967-94. [Link] [DOI:10.1007/s11676-016-0293-3]
63. Chishi SK, Sharma A. Socio- Economic and Constraints Status of Impact of Integrated Watershed Development Programme in Nagaland. Int J Curr Microbiol Appl Sci. 2018;7(11):1538-46. [Link] [DOI:10.20546/ijcmas.2018.711.177]
64. Fallah M, Kavian A, Omidvar E. Watershed prioritization in order to implement soil and water conservation practices. Environ Earth Sci. 2016;75:1248. [Link] [DOI:10.1007/s12665-016-6035-1]
65. Arabameri A, Pradhan B, Pourghasemi HR, Rezaei K. Identification of erosion- prone areas using different multi- criteria decision- making techniques and GIS. Geomatics Nat Hazards Risk. 2018;9(1):1129- 55. [Link] [DOI:10.1080/19475705.2018.1513084]
66. Shivhare N, Dikshit PKS, Dwidei BS. A comparison of SWAT model calibration techniques for hydrological modeling in the Ganga river watershed. Engineering. 2018;4(5):643-52. [Link] [DOI:10.1016/j.eng.2018.08.012]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.