Volume 8, Issue 3 (2020)                   ECOPERSIA 2020, 8(3): 147-154 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zaremanesh H, Akbari N, Eisvand H, Ismaili A, Feizian M. The Effect of Humic Acid on Soil Physicochemical and Biological Properties under Salinity Stress Conditions in Pot Culture of Satureja khuzistanica Jamzad. ECOPERSIA 2020; 8 (3) :147-154
URL: http://ecopersia.modares.ac.ir/article-24-36098-en.html
1- Agronomy & Plant Breeding Department, Agriculture Faculty, Lorestan University, Khorramabad, Iran
2- Agronomy & Plant Breeding Department, Agriculture Faculty, Lorestan University, Khorramabad, Iran , eisvand.hr@lu.ac.ir
3- Soil Science Department, Agriculture Faculty, Lorestan University, Khorramabad, Iran
Abstract:   (2171 Views)
Aims: High salt accumulation has severe adverse effects on soil characteristics. Humic acid can improve the soil structure, soil microbial communities, and absorption and maintenance of mineral nutrients. The aim of the present study was to determine the effects of humic acid on some physicochemical and biological soil properties in soils under salt stress.
Materials & Methods: The experiment was conducted as a factorial based on RCBD design with four replications. The first factor included humic acid in five levels (zero, 10, 20, 30, and 40mg kg-1 soil). The second factor was salinity stress in five levels (0, 25, 50, 75, and 100mM NaCl). The sampling was carried out in two stages, before and after harvest.
Findings: The results showed that S1H5 treatment had the lowest soil electrical conductivity (EC), soil reaction (pH), bulk density, and population of actinomycetes with average values of 0.26dS m-1, 6.21, 1.12g cm-3, and 516cell g-1 of soil and had the highest fungal and bacterial population with an average of 1525000 and 137500000cell g-1 of soil, respectively.
Conclusion: Salt stress has a significant effect on physicochemical and biological soil properties except for the population of actinomyces that their activity was better, at a high level of salinity stress, it had adverse effects on other properties. Although using humic acid improved soil properties. According to the results, using humic acid can be a good solution to reduce the adverse effects of salt stress.
Full-Text [PDF 744 kb]   (1698 Downloads)    
Article Type: Original Research | Subject: Soil Conservation and Management
Received: 2019/09/1 | Accepted: 2020/02/9 | Published: 2020/09/20
* Corresponding Author Address: Lorestan University, 5th Kilometer of Khorramabad-Boroujerd Highway, Khorramabad, Lorestan, Iran. Postal code: 6815144316.

References
1. Tejada M, Garcia C, Gonzalez JL, Hernandez MT. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biol Biochem. 2006;38(6):1413-21. [Link] [DOI:10.1016/j.soilbio.2005.10.017]
2. Leytem AB, Mikkelsen RL. The nature of phosphorus in calcareous soils. Better Crop. 2005;89(2):11-3. [Link]
3. Tejada M, Gonzalez JL. Beet vinasse applied to wheat under dryland conditions affects soil properties and yield. Eur J Agron. 2005;23(4):336-47. [Link] [DOI:10.1016/j.eja.2005.02.005]
4. Ouhadi V, Goodarzi A. Assessment of the stability of a dispersive soil treated by alum. Eng Geol. 2006;85(1-2):91-101. [Link] [DOI:10.1016/j.enggeo.2005.09.042]
5. Sardinha M, Müller T, Schmeisky H, Joergensen RG. Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol. 2003;23(3):237-44. [Link] [DOI:10.1016/S0929-1393(03)00027-1]
6. Khaled H, Fawy HA. Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil Water Res. 2011;6(1):21-9. [Link] [DOI:10.17221/4/2010-SWR]
7. Gümüş İ, Şeker C. Influence of humic acid applications on soil physicochemical properties. Solid Earth. 2015;7:2481-500. [Link] [DOI:10.5194/sed-7-2481-2015]
8. Fahramand M, Moradi H, Noori M, Sobhkhizi A, Adibian M, Abdollahi S, et al. Influence of humic acid on increase yield of plants and soil properties. Int J Farming Allied Sci. 2014;3(3):339-41. [Link]
9. Leventoglu H, Erdal İ. Effect of high humic substance levels on growth and nutrient concentration of corn under calcareous conditions. J Plant Nutr. 2014;37(12):2074-84. [Link] [DOI:10.1080/01904167.2014.920373]
10. Yildirim E. Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agric Scand Sect B Soil Plant Sci. 2007;57(2):182-6. [Link] [DOI:10.1080/09064710600813107]
11. Peña-Méndez EM, Havel J, Patočka J. Humic substances-compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine. J Appl Biomed. 2005;3(1):13-24. [Link] [DOI:10.32725/jab.2005.002]
12. Tahir MM, Khurshid M, Khan MZ, Abbasi MK, Kazmi MH. Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere. 2011;21(1): 124-31. [Link] [DOI:10.1016/S1002-0160(10)60087-2]
13. Nikee E, Pazoki A, Zahedi H. Influences of ascorbic acid and gibberellin on alleviation of salt stress in summer savory (Satureja hortensis L.). Int J Biosci. 2014;5(4):245-55. [Link] [DOI:10.12692/ijb/5.4.245-255]
14. Ahn JK, Chung IM. Allelopathic potential of rice hulls on germination and seedling growth of barnyardgrass. Agron J. 2000;92(6):1162-7. [Link] [DOI:10.2134/agronj2000.9261162x]
15. Blake GR, Hartage KH. Particle density. In: Klute A, Campbell GS, Jackson RD, Mortland MM, Nielsen DR, editors. Methods of soil analysis, part 1. 2nd Edition. Madison: Soil Science Society of America; 1986. pp. 377-81. [Link]
16. Brady NC, Weil RR. The nature and properties of soils. 11th Edition. Upper Saddle River: Prentice Hall; 1996. [Link]
17. Sadusky MC, Sparks DL, Noll MR, Hendricks GJ. Kinetics and mechanisms of potassium release from sandy Middle Atlantic Coastal Plain soils. Soil Sci Soc Am J. 1987;51(6):1460-5. [Link] [DOI:10.2136/sssaj1987.03615995005100060011x]
18. Jaremko D, Kalembasa D. A comparison of methods for the determination of cation exchange capacity of soils/Porównanie metod. Ecol Chem Eng S. 2014;21(3):487-98. [Link] [DOI:10.2478/eces-2014-0036]
19. Nelson BW, Sammers LE. Total carbon, organic carbon, and organic matter. In: Page AL, editor. Methods of soil analysis part 2. Chemical and microbiological properties. Madison: American Society of Agronomy; 1982. pp. 539-77. [Link]
20. Wollum AG. Cultural methods for soil microorganisms. In: Page AL, editor. Methods of soil analysis, part 2. Madison: American Society of Agronomy; 1982. pp. 781-801. [Link] [DOI:10.2134/agronmonogr9.2.2ed.c37]
21. Kucey RM. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci. 1983;63(4):671-8. [Link] [DOI:10.4141/cjss83-068]
22. Alef K, Nannipieri P. Methods in applied soil microbiology and biochemistry. Cambridge: Academic Press; 1995. [Link]
23. Setia R, Gottschalk P, Smith P, Marschner P, Baldock J, Setia D, et al. Soil salinity decreases global soil organic carbon stocks. Sci Total Environ. 2013;465:267-72. [Link] [DOI:10.1016/j.scitotenv.2012.08.028]
24. Vasconcellos RL, Bonfim JA, Baretta D, Cardoso EJ. Arbuscular mycorrhizal fungi and glomalin‐related soil protein as potential indicators of soil quality in a recuperation gradient of the Atlantic forest in Brazil. Land Degrad Dev. 2016;27(2):325-34. [Link] [DOI:10.1002/ldr.2228]
25. Ali M, Mindari W. Effect of humic acid on soil chemical and physical characteristics of embankment. MATEC Web Conf. 2016;58:01028. [Link] [DOI:10.1051/matecconf/20165801028]
26. Sparling G, Parfitt RL, Hewitt AE, Schipper LA. Three approaches to define desired soil organic matter contents. J Environ Qual. 2003;32(3):760-6. [Link] [DOI:10.2134/jeq2003.7600]
27. Amlinger F, Peyr S, Geszti J, Dreher P, Weinfurtner K, Nortcliff S. Beneficial effects of compost application on fertility and productivity of soils: Literature Study. Unknown Publisher city: Federal Ministry for Agriculture and Forestry, Environment and Water Management; 2007. [Link]
28. Agegnehu G, Vanbeek C, Bird MI. Influence of integrated soil fertility management in wheat and tef productivity and soil chemical properties in the highland tropical environment. J Soil Sci Plant Nutr. 2014;14(3):532-45. [Link] [DOI:10.4067/S0718-95162014005000042]
29. Abdel-Rahman G. Impact of compost on soil properties and crop productivity in the Sahel North Burkina Faso. Am Eurasian J Agric Environ Sci. 2009;6(2):220-6. [Link]
30. Golabi MH, Denney MJ, Iyekar C. Use of composted organic wastes as alternative to synthetic fertilizers for enhancing crop productivity and agricultural sustainability on the tropical island of Guam. 13th International Soil Conservation Organisation Conference, 2004 July 4-8, Brisbane, Australia. Unknown Publisher city: Unknown Publisher; 2004. [Link]
31. Dadhich SK, Somani LL, Shilpkar D. Effect of integrated use of fertilizer P, FYM and biofertilizers on soil properties and productivity of soybean-wheat crop sequence. J Adv Dev Res. 2011;2(1):42-6. [Link]
32. Mousa AA. Effect of using some soil conditioners on salt affected soil properties and its productivity at El-Tina plain area, north Sinai, Egypt. Egypt J Soil Sci. 2017;57(1):101-11. [Link] [DOI:10.21608/ejss.2017.1526]
33. Tranter G, Minasny B, McBratney AB, Murphy B, McKenzie NJ, Grundy M, et al. Building and testing conceptual and empirical models for predicting soil bulk density. Soil Use Manag. 2007;23(4):437-43. [Link] [DOI:10.1111/j.1475-2743.2007.00092.x]
34. Vengadaramana A, Jashothan PT. Effect of organic fertilizers on the water holding capacity of soil in different terrains of Jaffna peninsula in Sri Lanka. J Nat Prod Plant Resour. 2012;2(4):500-3. [Link]
35. Ahmed H, Ismail F. Effectiveness of humic acid applicationin improving saline soil properties and fodder beet production. J Soil Sci Agric Eng. 2016;7(9):623-34. [Link] [DOI:10.21608/jssae.2016.40333]
36. Oo AN, Iwai CB, Saenjan P. Soil properties and maize growth in saline and nonsaline soils using cassava‐industrial waste compost and vermicompost with or without earthworms. Land Degrad Dev. 2015;26(3):300-10. [Link] [DOI:10.1002/ldr.2208]
37. Brown S, Cotton M. Changes in soil properties and carbon content following compost application: Results of on-farm sampling. Compos Sci Util. 2011;19(2):87-96. [Link] [DOI:10.1080/1065657X.2011.10736983]
38. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia. 2004;141(2):221-35. [Link] [DOI:10.1007/s00442-004-1519-1]
39. Wichern J, Wichern F, Joergensen RG. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma. 2006;137(1-2):100-8. [Link] [DOI:10.1016/j.geoderma.2006.08.001]
40. Elgharably A, Marschner P. Microbial activity and biomass and N and P availability in a saline sandy loam amended with inorganic N and lupin residues. Eur J Soil Biol. 2011;47(5):310-5. [Link] [DOI:10.1016/j.ejsobi.2011.07.005]
41. Yan N, Marschner P. Response of microbial activity and biomass to increasing salinity depends on the final salinity, not the original salinity. Soil Biol Biochem. 2012;53:50-5. [Link] [DOI:10.1016/j.soilbio.2012.04.028]
42. Chowdhury N, Marschner P, Burns R. Response of microbial activity and community structure to decreasing soil osmotic and matric potential. Plant Soil. 2011;344(1-2):241-54. [Link] [DOI:10.1007/s11104-011-0743-9]
43. Schoeneberger PJ, Wysoki DA, Boenhm EC, Broderson WD. Field book for describing and sampling soils. Lincoln: Natural Resource Conservation Service, National Soil Survey Center; 2002. [Link]
44. Rath KM, Rousk J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biol Biochem. 2015;81:108-23. [Link] [DOI:10.1016/j.soilbio.2014.11.001]
45. Rousk J, Elyaagubi FK, Jones DL, Godbold DL. Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient. Soil Biol Biochem. 2011;43(9):1881-7. [Link] [DOI:10.1016/j.soilbio.2011.05.007]
46. Abdul Hamid A, Ariffin S, Syed Mohamad SA. Identification and optimal growth conditions of actinomycetes isolated from mangrove environment. Malays J Anal Sci. 2015;19(4):904-10. [Link]
47. Kumari GS, Gundala PB, Kumar JK, Teja CP, Veena D, Chinthala P. Stress tolerance and characterization of actinomycetes from salt pan soils of Nellore district, Andhra Pradesh. Res J Pharm Biol Chem Sci. 2016;7(5):1426-35. [Link]
48. Black JG, Lewis LM. Microbiology: Principles and explorations. 7th Edition. Hoboken: John Wiley & Sons; 2005. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.