Volume 8, Issue 1 (2020)                   ECOPERSIA 2020, 8(1): 41-46 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavi Kouhi S, Erfanian M. Predicting the Present and Future Distribution of Medusahead and Barbed Goatgrass in Iran. ECOPERSIA 2020; 8 (1) :41-46
URL: http://ecopersia.modares.ac.ir/article-24-35969-en.html
1- Biology Department, Science Faculty, University of Birjand, Birjand, Iran , smmousavi@birjand.ac.ir
Abstract:   (4247 Views)
Aims: Medusahead (Taeniatherum caput-medusae (L.) Nevski) and barbed goatgrass (Aegilops triuncialis L.) are two annual species that drastically affect rangelands worldwide. In the present study, the current distribution range of these species was investigated using ecological niche modelling (ENM), and then their distribution was predicted in 2040 and 2070.
Materials & Methods: In this study, using 19 bioclimatic variables and the recorded presence locations, the current distribution of T. caput-medusae and A. triuncialis was predicted using MaxEnt. Moreover, changes in the distribution ranges of these species in the future (2040 and 2070) were estimated.
Findings: According to the results, the mean temperature of the coldest quarter and Isothermality had the greatest effect on the distribution of A. triuncialis in the present and future. For T. caput-medusae distribution in the present, 2040, and 2070 the mean temperature of the coldest quarter had the highest effect on determining the potential distribution range of this plant. Accordingly, climate change will not affect the distribution range of barbed goatgrass, however, it may facilitate the expansion of medusahead to the upper elevations.
Conclusion: In the present, comparing the two, barbed goatgrass had a higher probability to invade rangelands of Iran. Climate change might facilitate the invasion of medusahead to upper elevations. Grazing exclusion is advised to control the range expansion of these two species where they are present.

Full-Text [PDF 720 kb]   (1294 Downloads)    
Article Type: Original Research | Subject: Terrestrial Ecosystems
Received: 2019/08/27 | Accepted: 2019/10/18 | Published: 2020/03/14
* Corresponding Author Address: Biology Department, Science Faculty, University of Birjand, University Boulevard, Birjand, Southern Khorasan, Iran. Postal Code: 9717434765

References
1. Mooney HA, Cleland EE. The evolutionary impact of invasive species. Proc Natl Acad Sci U S A. 2001;98(10):5446-51. [Link] [DOI:10.1073/pnas.091093398]
2. Manchester SJ, Bullock JM. The impacts of non‐native species on UK biodiversity and the effectiveness of control. J Appl Ecol. 2000;37(5):845-64. [Link] [DOI:10.1046/j.1365-2664.2000.00538.x]
3. Hirzel AH, Hausser J, Chessel D, Perrin N. Ecological‐niche factor analysis: How to compute habitat‐suitability maps without absence data?. Ecology. 2002;83(7):2027-36. [Link] [DOI:10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2]
4. Václavík T, Meentemeyer RK. Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?. Ecol Model. 2009;220(23):3248-58. [Link] [DOI:10.1016/j.ecolmodel.2009.08.013]
5. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, et al. Extinction risk from climate change. Nature. 2004;427(6970):145-8. [Link] [DOI:10.1038/nature02121]
6. DiTomaso J, Heise K, Kyser G, Merenlender A, Keiffer R. Carefully timed burning can control barb goatgrass. Calif Agric. 2001;55(6):47-53. [Link] [DOI:10.3733/ca.v055n06p47]
7. Van Slageren MW, International Center for Agricultural Research in the Dry Areas. Wild wheats : A monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae): A revision of all taxa closely related to wheat, excluding wild Triticum species, with notes on other genera in the tribe Triticcae, especially Triticum. Wageningen: Wageningen Agricultural University; 1994. [Link]
8. Bor N. Graminae. In: Rechinger KH, editor. Flora Iranica 70. Graz: Akademische Druck-und Verlagsanstalt; 1970. pp. 377-99. [Link]
9. Kostivkovsky V, Young JA. Invasive exotic rangeland weeds: A glimpse at some of their native habitats. Rangel Arch. 2000;22(6):3-6. [Link] [DOI:10.2458/azu_rangelands_v22i6_kostivkovsky]
10. Randall R. A global compendium of weeds. 2nd Edition. Melbourne: Department of Agriculture and Food Western Australia; 2012. [Link]
11. Davy JS, Ditomaso JM, Laca EA. Barb goatgrass. Davis: UC Agriculture & Natural Resources; 2008. [Link] [DOI:10.3733/ucanr.8315]
12. Widmer TL, Sforza R. Exploration for plant pathogens against Taeniatherum caput-medusae (medusahead ryegrass). In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK, editors. Proceedings of the XI international symposium on biological control of weeds. Canberra: CSIRO Entomology; 2004. pp. 193-7. [Link]
13. Erfanian MB, Ejtehadi H, Vaezi J, Moazzeni H. Plant community responses to multiple disturbances in an arid region of northeast Iran. Land Degrad Dev. 2019;30(13):1554-63. [Link] [DOI:10.1002/ldr.3341]
14. Davies KW, Dean AE. Prescribed summer fire and seeding applied to restore juniper-encroached and exotic annual grass-invaded sagebrush steppe. Rangel Ecol Manag. 2019;72(4):635-9. [Link] [DOI:10.1016/j.rama.2019.03.006]
15. Valliere JM, Balch S, Bell C, Contreras C, Hilbig BE. Repeated mowing to restore remnant native grasslands invaded by nonnative annual grasses: Upsides and downsides above and below ground. Restor Ecol. 2019;27(2):261-8. [Link] [DOI:10.1111/rec.12873]
16. Chavan V. Recommended practices for citation of data published through the GBIF network version 1.0. Copenhagen: Global Biodiversity Information Facility; 2012. [Link]
17. Hijmans RJ, Phillips S, Leathwick J, Elith J. Dismo: Species distribution modeling. Version Unknown [Software]. 2017 [cited 2019 May 11]. Available from: https://cran.r-project.org/package=dismo [Link]
18. R Core Team. R: A language and environment for statistical computing [Internet]. Vienna: R Foundation for Statistical Computing; 2018 [cited 2019 May 21]. Available from: https://www.R-project.org. [Link]
19. Pearce JL, Boyce MS. Modelling distribution and abundance with presence‐only data. J Appl Ecol. 2006;43(3):405-12. [Link] [DOI:10.1111/j.1365-2664.2005.01112.x]
20. Renner IW, Warton DI. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics. 2013;69(1):274-81. [Link] [DOI:10.1111/j.1541-0420.2012.01824.x]
21. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011;17(1):43-57. [Link] [DOI:10.1111/j.1472-4642.2010.00725.x]
22. De Souza Muñoz ME, De Giovanni R, De Siqueira MF, Sutton T, Brewer P, Pereira RS, et al. OpenModeller: A generic approach to species' potential distribution modelling. GeoInformatica. 2011;15(1):111-35. [Link] [DOI:10.1007/s10707-009-0090-7]
23. Muscarella R, Galante PJ, Soley‐Guardia M, Boria RA, Kass JM, Uriarte M, et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol. 2014;5(11):1198-205. [Link] [DOI:10.1111/2041-210X.12261]
24. Pirayesh Shirazi Nejad M, Aliabadian M, Mirshamsi O. Divergence in the ecological niches of the white wagtail (Motacilla alba Linnaeus, 1758) complex using the ecological niche modeling approach. Iran J Anim Biosyst. 2017;13(1):53-66. [Link]
25. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3-4):231-59. [Link] [DOI:10.1016/j.ecolmodel.2005.03.026]
26. Kyser GB, DiTomaso JM, Doran MP, Orloff SB, Wilson RG, Lancaster DL, et al. Control of medusahead (Taeniatherum caput-medusae) and other annual grasses with imazapic. Weed Technol. 2007;21(1):66-75. [Link] [DOI:10.1614/WT-06-027.1]
27. Mazangi A, Ejtehadi H, Mirshamsi O, Ghassemzadeh F, Hosseinianyousefkhani SS. Effects of climate change on the distribution of endemic Ferula xylorhachis Rech. f. (Apiaceae: Scandiceae) in Iran: Predictions from ecological niche models. Russ J Ecol. 2016;47(4):349-54. [Link] [DOI:10.1134/S1067413616040123]
28. Almasieh K, Zoratipour A, Negaresh K, Delfan-Hasanzadeh K. Habitat quality modelling and effect of climate change on the distribution of Centaurea pabotii in Iran. Spanish J Agric Res. 2018;16(3):e0304. [Link] [DOI:10.5424/sjar/2018163-13098]
29. Chuong J, Huxley J, Spotswood EN, Nichols L, Mariotte P, Suding KN. Cattle as dispersal vectors of invasive and introduced plants in a California annual grassland. Rangel Ecol Manag. 2016;69(1):52-8. [Link] [DOI:10.1016/j.rama.2015.10.009]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.