Volume 7, Issue 4 (2019)                   IQBQ 2019, 7(4): 245-255 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parsakhoo A. Improving the Soil Mechanical Properties of Forest Roads by Combinations of Nano-Silica Materials and Horsetail Ash. IQBQ. 2019; 7 (4) :245-255
URL: http://journals.modares.ac.ir/article-24-35882-en.html
Forestry Department, Forest Science Faculty, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran , aidinparsakhoo@yahoo.com
Abstract:   (18 Views)
Aims: Fine grained soil shows weak geotechnical properties when they are used in roadbed. The aim of the present study was to assess the efficiency of nano-SiO2 and horsetail ash in improving the mechanical properties of high plastic cohesive soil (CH) and low plastic cohesive soil (CL).
Materials & Methods: Soil samples were brought from an earthy bed of proposed roads in Bahramnia Forest, Golestan Province, Iran. Then Atterberg limits, maximum dry density (MDD), unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were conducted on the soil samples treated with 0.5% nano-SiO2+1% ash, 1% nano+2% ash, 1.5% nano+3% ash and 2% nano+4% ash. Analysis was done on 7, 14, and 28-day aged samples. Statistical analysis was done using the SAS 9.4 software to compare means among treatments.
Findings: Results showed that liquid limit and plastic limit increased to 56% and 37% for CH and 50% and 32% for CL with increasing the percentage of nano-SiO2 and ash mixture. These changes reduced the plastic index. With the increase in the percentage of additive materials and curing time, the MDD, UCS, and CBR get increases. Dry density decreased by increasing moisture content at the peak state (1.70g cm-3 for CH and 2.03g cm-3 for CL). The nanoash treated CL soil has a higher density than the nanoash treated CH soil.
Conclusion: A optimal mixture of 1.5% nano-SiO2+3% horsetail ash and 1% nano-SiO2+2% ash, as well as 28-day curing time, is recommended for the stabilization of CH and CL earthy bed, respectively.
 
Full-Text [PDF 932 kb]   (7 Downloads)    

Received: 2019/08/24 | Accepted: 2019/10/6 | Published: 2019/12/21
* Corresponding Author Address: Forestry Department, Forest Sciences Faculty, Gorgan University of Agricultural Sciences & Natural Resources, Basij Square, Gorgan, Golestan Province, Iran. Postal Code: 4918943464

References
1. Changizi F, Haddad A. Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber. J Rock Mech Geotech Eng. 2015;7(4):367-78. [Link] [DOI:10.1016/j.jrmge.2015.03.013]
2. Huang Y, Wen Z. Recent developments of soil improvement methods for seismic liquefaction mitigation. Nat Hazard. 2015;76(3):1927-38. [Link] [DOI:10.1007/s11069-014-1558-9]
3. Arya A, Jain A. A review of geotechnical characteristics of nano-additives treated soils. Int J Adv Res Sci Eng. 2017;6(1):838-43. [Link]
4. Mohammadi M, Niazian M. Investigation of nano-clay effect on geotechnical properties of Rasht clay. Int J Adv Sci Tech Res. 2013;3(3):37-46. [Link]
5. Majeed ZH, Taha MR. A review of stabilization of soils by using nanomaterials. Aust J Basic Appl Sci. 2013;7(2):576-81. [Link]
6. García S, Trejo P, Ramírez O, López-Molina J, Hernández N. Influence of nanosilica on compressive strength of lacustrine soft clays. The 19th International Conference on Soil Mechanics and Geotechnical Engineering, 2017 September 17-21, Seoul, Korea. Seoul: Korea Geotechnical Society; 2017. pp. 369-72. [Link]
7. Anandha Kumar S, Manikandan R. Influence of nanosized additives on the improvement of clay soil. Int J Adv Sci Eng Res. 2016;1(1):23-30. [Link]
8. Changizi F, Haddad A. Effect of nano-SiO2 on the geotechnical properties of cohesive soil. Geotech Geol Eng. 2016;34(2):725-33. [Link] [DOI:10.1007/s10706-015-9962-9]
9. Phanikumar BR. Effect of lime and fly ash on swell, consolidation and shear strength characteristics of expansive clays: A comparative study. Geomech Geoengin Int J. 2009;4(2):175-81. [Link] [DOI:10.1080/17486020902856983]
10. Bahmani SH, Huat BBK, Asadi A, Farzadnia N. Stabilization of residual soil using SiO2 nanoparticles and cement. Constr Build Mater. 2014;64:350-9. [Link] [DOI:10.1016/j.conbuildmat.2014.04.086]
11. Pashabavandpouri MA, Jahangiri S. Effect of nano silica on swelling, compaction and strength properties of clayey soil stabilized with lime. J Appl Environ Biol Sci. 2015;5(7S):538-48. [Link]
12. Chen L, Lin DF. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement. J Hazard Mater. 2009;162(1):321-7. [Link] [DOI:10.1016/j.jhazmat.2008.05.060]
13. Brooks RR, Holzbecher J, Ryan DE. Horsetails (Equisetum) as indirect indicators of gold mineralization. J Geochem Explor. 1981;16(1):21-6. [Link] [DOI:10.1016/0375-6742(81)90122-9]
14. Atterberg A. On the investigation of the physical properties of soils and on the plasticity of clays. Internationale Mitteilungen für Bodenkunde. 1911;1:10-43. [German] [Link]
15. ASTM D1557. Standard test methods for laboratory compaction of soil modified effort [Internet]. Montgomery: American Society for Testing and Materials; 1557 [cited 2005 December 20]. Available from: http://www.dres.ir/fanni/khak/DocLib4/D%201557%20%E2%80%93%2002%20%20;RDE1NTC_.pdf [Link]
16. Davidson DT, Gardiner WF. Calculation of standard proctor density and optimum moisture content from mechanical, analysis, shrinkage and factors and plasticity index. The 29th Annual Meeting of the Highway Research Board Held, 1949 December 13-16, Washington, D.C., USA. Washington, D.C.: TRB; 1949. [Link]
17. ASTM D2166. Standard test method for unconfined compressive strength of cohesive soil [Internet]. West Conshohocken: American Society for Testing and Materials; 2000 [cited 2015 July 11]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/D2166-00.htm [Link]
18. ASTM D1883-05. Standard test method for CBR (Calofornia Bearing Ratio) of laboratory compacted soils [Internet]. West Conshohocken: American Society for Testing and Materials; 2005 [cited 2007 June 10]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/D1883-05.htm [Link]
19. Yetimoglu T, Inanir M, Inanir OE. A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay. Geotext Geomembr. 2005;23(2):174-83. [Link] [DOI:10.1016/j.geotexmem.2004.09.004]
20. Wilson MA, Tran NH, Milev AS, Kamali Kannangara GS, Volk H, Max Lu GQ. Nanomaterials in soils. Geoderma. 2008;146(1-2):291-302. [Link] [DOI:10.1016/j.geoderma.2008.06.004]
21. Gallagher PM, Pamuk A, Abdoun T. Stabilization of liquefiable soils using colloidal silica grout. J Mater Civil Eng. 2007;19(1):33-40. [Link] [DOI:10.1061/(ASCE)0899-1561(2007)19:1(33)]
22. Priyadharshini R, Arumairaj PD. Improvement of bearing capacity of soft clay using nanomaterials. Int J Sci Res. 2015;4(6):218-21. [Link]
23. Yazarloo R, Aslani Katooli F, Golestani M, Asadi M, Ebrahimi S. Adding calcite and nanocalcite to improving the plastic properties of the lean clay. The 3rd World Congress on New Technologies (NewTech'17), 2017 June 6-8, Rome, Italy. Ottawa: International ASET; 2017. [Link] [DOI:10.11159/icnfa17.106]
24. Babu S, Joseph Sh. Effect of nano materials on properties of soft soil. Int J Sci Res. 2016;5(8):634-7. [Link]
25. Hareesh P, Vinoth Kumar R. Assessment of nano-materials on geotechnical properties of Clayey soils. International Conference on Engineering Innovations and Solutions, 2016 Agu 25, India. Dehli: International Conference on Engineering Innovations and Solutions; 2016. pp. 66-71. [Link]
26. Firoozi AA, Taha MR, Firoozi AA, Khan TA. Assessment of nano-zeolite on soil properties. Aust J Basic Appl Sci. 2014;8(19):292-8. [Link]
27. Pham H, Nguyen QP. Effect of silica nanoparticles on clay swelling and aqueous stability of nanoparticle dispersions. J Nanopart Res. 2014;16(1):2137. [Link] [DOI:10.1007/s11051-013-2137-9]
28. Nohani E, Alimakan E. The effect of nanoparticles on geotechnical properties of clay. Int J Life Sci. 2015;9(4):25-7. [Link] [DOI:10.3126/ijls.v9i4.12670]
29. Sadrjamali M, Athar SM, Negahdar A. Modifying soil shear strength parameters using additives in laboratory condition. Curr World Environ. 2015;10(1):120-30. [Link] [DOI:10.12944/CWE.10.Special-Issue1.17]
30. Seyedi Gelsefidi SA, Mirkazemi SM, Baziar MH. Application of nano-material to stabilize a weak soil. 7th International Conference on Case Histories in Geotechnical Engineering, 2013 29 April-4 May, Rolla, USA. Rolla: Missouri S&T; 2013. [Link]
31. Nasiri M, Lotfalian M, Modarres A, Wu W. Optimum Utilization of Rice Husk Ash for Stabilization of Sub-base Materials in Construction and Repair Project of Forest Roads. Croat J For Eng. 2016;37(2):333-43. [Link]
32. Pereira RS, Emmert F, Miguel EP, Gatto A. Soil stabilization with lime for the construction of forest roads. Floresta e Ambiente. 2018;25(2):e20150077. [Link] [DOI:10.1590/2179-8087.007715]
33. Cloutier D, Watson AK. Growth and regeneration of field horsetail (Equisetum arvense). Weed Sci. 1985;33(3):358-65. [Link] [DOI:10.1017/S0043174500082424]
34. Bahadori H, Hasheminezhad A, Taghizadeh F. Experimental study on marl soil stabilization using natural pozzolans. J Mater Civ Eng. 2018;31(2):04018363. [Link] [DOI:10.1061/(ASCE)MT.1943-5533.0002577]
35. Hastuty IP, Sembiring IS, Abidin MI. The utilization of volcanic ash and high Rusk ash as material stabilization in clay by unconfined compression test (UCT) and California bearing ratio (CBR). IOP Conf Ser Mater Sci Eng. 2017;180(1):012141. [Link] [DOI:10.1088/1757-899X/180/1/012141]
36. Saffari R, Habibagahi G, Nikooee E, Niazi A. Biological stabilization of a swelling fine-grained soil: The role of microstructural changes in the shear behavior. Iran J Sci Technol Trans Civ Eng. 2017;41(4):405-14. [Link] [DOI:10.1007/s40996-017-0066-z]
37. Latifi N, Vahedifard F, Ghazanfari E, Rashid AS. Sustainable usage of calcium carbide residue for stabilization of clays. J Mater Civ Eng. 2018;30(6):04018099. [Link] [DOI:10.1061/(ASCE)MT.1943-5533.0002313]
38. Khazaei J, Moayedi H. Soft expansive soil improvement by eco-friendly waste and quick lime. Arab J Sci Eng. 2019;44(10):8337-46. [Link] [DOI:10.1007/s13369-017-2590-3]
39. Hooshmand A, Aminfar MH, Asghari E, Ahmadi H. Mechanical and physical characterization of Tabriz Marls, Iran. Geotech Geol Eng. 2012;30(1):219-32. [Link] [DOI:10.1007/s10706-011-9464-3]
40. Bahadori H, Hasheminezhad A, Mohamadi Asl S. Stabilization of Urmia Lake peat using natural and artificial pozzolans. Proc Inst Civ Eng Ground Improv. 2019;111(2):1-32. [Link] [DOI:10.1680/jgrim.19.00024]
41. Bahadori H, Hasheminezhad A, Alizadeh S. The influence of natural pozzolans structure on marl soil stabilization. Transp Infrastruct Geotechnol. 2019;132(4):1-9. [Link] [DOI:10.1007/s40515-019-00089-4]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author