Volume 6, Issue 4 (2018)                   IQBQ 2018, 6(4): 269-284 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heidary K, Najafi Nejad A, Dekker L, Ownegh M, Mohammadian Behbahani A. Impact of Soil Water Repellency on Hydrological and Erosion Processes; A Review. IQBQ. 2018; 6 (4) :269-284
URL: http://journals.modares.ac.ir/article-24-21710-en.html
1- Watershed & Arid Zone Management Department, Rangeland & Watershed Management Faculty, Gorgan University of Agricultural Sciences & Natural Resources (GUASNR), Gorgan, Iran
2- Watershed & Arid Zone Management Department, Rangeland & Watershed Management Faculty, Gorgan University of Agricultural Sciences & Natural Resources (GUASNR), Gorgan, Iran , najafinejad@gmail.com
3- Environmental Sciences Department, Soil Physics & Land Management Group, Wageningen University & research, Wageningen, Netherlands
Abstract:   (181 Views)
Introduction: Soil water repellency was first reported in the first half of the 20th century for peat soils. Depending on the severity of water repellency, a water repellent soil will resist water penetration during seconds to hours or even days. This has detrimental effects on surface and subsurface flow processes such as increased runoff, erosion, and preferential flow. The present study was conducted with the aim of investigating the effects of Soil water repellency on hydrological and erosion processes in order to identify gaps in the existing investigations.
Conclusion: Major survey gaps remained, including the dissociation of the symptoms of water repellency on soil erosion such as the existence of a soil crust and little knowledge of the temporal patterns of water repellency and their hydrological outcomes. Understanding the mechanisms of water repellency is relevant to the separation of different causal chains as well as the adjust runoff coefficients in different water repellency areas. Soil water repellency can be caused by a variety of compounds and processes and generally occurs after a period of drying weather. Under such conditions, the soil can change from a wettable to a water-repellent state when dried below its critical soil water content. Soil water repellency is found to occur in different soils worldwide, ranging from coarse to fine-textured. Water repellency in soils can result in losses of plant-available water, reduced agricultural crop production, and deterioration of turf quality on sports fields.
Full-Text [PDF 1154 kb]   (110 Downloads)    

Received: 2018/06/3 | Accepted: 2018/07/28 | Published: 2018/11/21
* Corresponding Author Address: Gorgan University of Agricultural Sciences & Natural Resources (GUASNR), Shahid Beheshti Street. Gorgan City, Golestan Province, Iran. Postal Code: 4913815739

References
1. Dekker LW, Oostindie K, Ritsema CJ. Exponential increase of publications related to soil water repellency. Aust J Soil Res. 2005;43(3):403-41. [Link] [DOI:10.1071/SR05007]
2. Dekker LW, Ritsema CJ. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency. Water Resour Res. 1994;30(9):2507-17. [Link] [DOI:10.1029/94WR00749]
3. Jordán A, Zavala LM, Mataix-Solera J, Doerr SH. Soil water repellency: Origin, assessment and geomorphological consequences. Catena. 2013;108:1-5. [Link] [DOI:10.1016/j.catena.2013.05.005]
4. Bisdom EBA, Dekker LW, Schoute JFT. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma. 1993;56(1-4):105-18. [Link] [DOI:10.1016/0016-7061(93)90103-R]
5. Schreiner O, Shorey EC. Chemical nature of soil organic matter. Washington D C: U S Government Printing Office; 1910. pp. 2-48. [Link]
6. Jamison VC. Resistance to wetting in the surface of sandy soils under citrus trees in central Florida and its effect upon penetration and the efficiency of irrigation. Soil Sci Soc Am J. 1947;11(C):103-9. [Link] [DOI:10.2136/sssaj1947.036159950011000C0020x]
7. De Bano LF. The role of fire and soil heating on water repellency in wildland environments: A review. J Hydrol. 2000;231-232:195-206. [Link] [DOI:10.1016/S0022-1694(00)00194-3]
8. L Cisar J, E Williams K, E Vivas H, J Haydu J. The occurrence and alleviation by surfactants of soil-water repellency on sand-based turfgrass systems. J Hydrol. 2000;231-232:352-8. [Link] [DOI:10.1016/S0022-1694(00)00207-9]
9. Shakesby RA, Doerr SH. Wildfire as a hydrological and geomorphological agent. Earth Sci Rev. 2006;74(3-4):269-307. [Link] [DOI:10.1016/j.earscirev.2005.10.006]
10. Ferro V, Porto P. Sediment Delivery Distributed (SEDD) Model. J Hydrol Eng. 2000;5(4):411-22. [Link] [DOI:10.1061/(ASCE)1084-0699(2000)5:4(411)]
11. Goebel MO, Woche SK, Bachmann J. Quantitative analysis of liquid penetration kinetics and slaking of aggregates as related to solid-liquid interfacial properties. J Hydrol. 2012;442-443:63-74. [Link] [DOI:10.1016/j.jhydrol.2012.03.039]
12. Shokri N, Lehmann P, Or D. Characteristics of evaporation from partially wettable porous media. Water Resour Res. 2009;45(2):15-30. [Link] [DOI:10.1029/2008WR007185]
13. Doerr SH, Llewellyn CT, Douglas P, Morley CP, Mainwaring KA, Haskins C, et al. Extraction of compounds associated with water repellency in sandy soils of different origin. Aust J Soil Res. 2005;43(3):225-37. [Link] [DOI:10.1071/SR04091]
14. Wallis MG, Scotter DR, Horne DJ. An evaluation of the intrinsic sorptivity water repellency index on a range of New-Zealand soils. Aust J Soil Res. 1991;29(3):353-62. [Link] [DOI:10.1071/SR9910353]
15. Doerr SH, Shakesby RA, Walsh RPD. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev. 2000;51(1-4):33-65. [Link] [DOI:10.1016/S0012-8252(00)00011-8]
16. Letey J, K Carrillo ML, P Pang X. Approaches to characterize the degree of water repellency. J Hydrol. 2000;231-232:61-5. [Link] [DOI:10.1016/S0022-1694(00)00183-9]
17. Letey J, Osborn J, Pelishek RE. Measurement of liquid-solid contact angles in soil and sand. Soil Sci. 1962;93(3):149-53. [Link] [DOI:10.1097/00010694-196203000-00001]
18. Philip JR, Smiles DE. Kinetics of sorption and volume change in three-component systems. Aust J Soil Res. 1969;7(1):1-19. [Link] [DOI:10.1071/SR9690001]
19. Tillman RW, Scotter DR, Wallis MG, Clothier BE. Water repellency and its measurement by using intrinsic sorptivity. Aust J Soil Res. 1989;27(4):637-44. [Link] [DOI:10.1071/SR9890637]
20. Wallis MG, Horne DJ. Soil water repellency. In: Stewart BA, editor. Advances in soil science. 20th Volume. New York: Springer; 1992. pp. 91-146. [Link] [DOI:10.1007/978-1-4612-2930-8_2]
21. Jiménez-Pinilla P, Lozano E, Mataix-Solera J, Arcenegui V, Jordán A, Zavala LM. Temporal changes in soil water repellency after a forest fire in a Mediterranean calcareous soil: Influence of ash and different vegetation type. Sci Total Environ. 2016;572:1252-60. [Link] [DOI:10.1016/j.scitotenv.2015.09.121]
22. Doerr SH. On standardizing the 'water drop penetration time' and the 'molarity of an ethanol droplet' techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surf Process Landf. 1998;23(7):663-8. https://doi.org/10.1002/(SICI)1096-9837(199807)23:7<663::AID-ESP909>3.0.CO;2-6 [Link] [DOI:10.1002/(SICI)1096-9837(199807)23:73.0.CO;2-6]
23. Bachmann J, Ellies A, H Hartge K. Development and application of a new sessile drop contact angle method to assess soil water repellency. J Hydrol. 2000;231-232:66-75. [Link] [DOI:10.1016/S0022-1694(00)00184-0]
24. Leue M, Gerke HH, Godow SC. Droplet infiltration and organic matter composition of intact crack and biopore surfaces from clay-illuvial horizons. J Plant Nutr Soil Sci. 2015;178(2):250-60. [Link] [DOI:10.1002/jpln.201400209]
25. Leelamanie DAL. Occurrence and distribution of water repellency in size fractionated coastal dune sand in Sri Lanka under Casuarina shelterbelt. Catena. 2016;142:206-12. [Link] [DOI:10.1016/j.catena.2016.03.026]
26. Zavala LM, García-Moreno J, Gordillo-Rivero ÁJ, Jordán A, Mataix-Solera J. Natural soil water repellency in different types of Mediterranean woodlands. Geoderma. 2014;226-227:170-8. [Link] [DOI:10.1016/j.geoderma.2014.02.009]
27. Kořenková L, Šimkovic I, Dlapa P, Juráni B, Matúš P. Identifying the origin of soil water repellency at regional level using multiple soil characteristics: The white Carpathians and Myjavska Pahorkatina Upland case study. Soil Water Res. 2015;10(2):78-89. [Link] [DOI:10.17221/28/2014-SWR]
28. Badía D, Sánchez C, Aznar JM, Martí C. Post-fire hillslope log debris dams for runoff and erosion mitigation in the semiarid Ebro Basin. Geoderma. 2015;237-238:298-307. [Link] [DOI:10.1016/j.geoderma.2014.09.004]
29. Rodríguez-Alleres M, Varela ME, Benito E. Natural severity of water repellency in pine forest soils from NW Spain and influence of wildfire severity on its persistence. Geoderma. 2012;191:125-31. [Link] [DOI:10.1016/j.geoderma.2012.02.006]
30. De Bano LF. The effect of hydrophobic substances on water movement in soil during infiltration. Soil Sci Soc Am J. 1971;35(2):340-3. [Link] [DOI:10.2136/sssaj1971.03615995003500020044x]
31. Badía-Villas D, González-Pérez JA, Aznar JM, Arjona-Gracia B, Martí-Dalmau C. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire. Geoderma. 2014;213:400-7. [Link] [DOI:10.1016/j.geoderma.2013.08.038]
32. Larsen IJ, Mac Donald LH, Brown E, Rough D, Welsh MJ, Pietraszek JH, et al. Causes of post-fire runoff and erosion: Water repellency, cover, or soil sealing?. Soil Sci Soc Am J. 2009;73(4):1393-407. [Link] [DOI:10.2136/sssaj2007.0432]
33. Pierson FB, Carlson DH, Spaeth KE. Impacts of wildfire on soil hydrological properties of steep sagebrush-steppe rangeland. Int J Wildland Fire. 2002;11(2):145-51. [Link] [DOI:10.1071/WF02037]
34. Mac Donald LH, Huffman EL. Post-fire soil water repellency: Persistence and soil moisture thresholds. Soil Sci Soc Am J. 2004;68(5):1729-34. [Link] [DOI:10.2136/sssaj2004.1729]
35. Akbarzadeh A, Ghorbani Dashtaki Sh, Naderi Khorasgani M, Mohammadi J, Taghizadeh Mehrjardi R. Effect of fire on water repellency, amount and factors of soil erosion in forests of southwest coast of the Caspian Sea. Iran J For. 2017;9(1):145-57. [Persian] [Link]
36. Mirbabaei SM, Shabanpour Shahrestani M, Zolfaghari AA, Taheri Abkenar K. Relationship between soil water repellency and some of soil properties in northern Iran. Catena. 2013;108:26-34. [Link] [DOI:10.1016/j.catena.2013.02.013]
37. Hallett PD. A brief overview of the causes, impacts and amelioration of soil water repellency - a review. Soil Water Res. 2008;3(1):S21-9. [Link] [DOI:10.17221/1198-SWR]
38. Urbanek E, Hallett P, Feeney D, Horn R. Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems. Geoderma. 2007;140(1-2):147-55. [Link] [DOI:10.1016/j.geoderma.2007.04.001]
39. Madsen MD, Zvirzdin DL, Petersen SL, Hopkins BG, Roundy BA, Chandler DG. Soil water repellency within a burned pi-on–juniper woodland: Spatial distribution, severity, and ecohydrologic implications. Soil Sci Soc Am J. 2011;75(4):1543-53. [Link] [DOI:10.2136/sssaj2010.0320]
40. Vogelmann ES, Reichert JM, Prevedello J, Consensa COB, Oliveira AÉ, Awe GO, et al. Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma. 2013;209-210:177-87. [Link] [DOI:10.1016/j.geoderma.2013.06.019]
41. Dekker LW, Doerr SH, Oostindie K, Ziogas AK, Ritsema CJ. Water repellency and critical soil water content in a dune sand. Soil Sci Soc Am J. 2001;65(6):1667-74. [Link] [DOI:10.2136/sssaj2001.1667]
42. Chau HW, Biswas A, Vujanovic V, Si BC. Relationship between the severity, persistence of soil water repellency and the critical soil water content in water repellent soils. Geoderma . 2014;221-222:113-20. [Link] [DOI:10.1016/j.geoderma.2013.12.025]
43. Pierson FB, Robichaud PR, Spaeth KE. Spatial and temporal effects of wildfire on the hydrology of a steep rangeland watershed. Hydrol Process. 2001;15(15):2905-16. [Link] [DOI:10.1002/hyp.381]
44. Mcghie DA, Posner AM. Water repellence of heavy textured Western Australian surface soil. Aust J Soil Res. 1980;18(3):309-23. [Link] [DOI:10.1071/SR9800309]
45. Sadeghi SHR, Mizuyama T, Miyata S, Gomi T, Kosugi K, Fukushima T, et al. Determinant factors of sediment graphs and rating loops in a reforested watershed. J Hydrol. 2008;356(3-4):271-82. [Link] [DOI:10.1016/j.jhydrol.2008.04.005]
46. Wallis MG, Horne DJ, Mc Auliffe KW. A study of water repellency and its amelioration in a yellow-brown sand. N Z J Agric Res. 1990;33(1):139-44. [Link] [DOI:10.1080/00288233.1990.10430670]
47. Doerr SH, Shakesby RA, Blake WH, Chafer CJ, Humphreys GS, Wallbrink PJ. Effects of differing wildfire severities on soil wettability and implications for hydrological response. J Hydrol. 2006;319(1-4):295-311. [Link] [DOI:10.1016/j.jhydrol.2005.06.038]
48. Fischer T, Veste M, Wiehe W, Lange P. Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. Catena. 2010;80(1):47-52. [Link] [DOI:10.1016/j.catena.2009.08.009]
49. Doerr SH, Shakesby RA. Soil Water Repellency. In: Huang PM, Li Y, Sumner ME, editors. Handbook of soil sciences: Properties and processes. 2nd Edition. Boca Raton: CRC Press; 2011. pp. 515-25. [Link]
50. Shakesby RA, Wallbrink PJ, Doerr SH, English PM, Chafer CJ, Humphreys GS, et al. Distinctiveness of wildfire effects on soil erosion in South-east Australian eucalypt forests assessed in a global context. For Ecol Manag. 2007;238(1-3):347-64. [Link]
51. Jordán A, Zavala LM, Nava AL, Alanís N. Occurrence and hydrological effects of water repellency in different soil and land use types in Mexican volcanic highlands. Catena. 2009;79(1):60-71. [Link] [DOI:10.1016/j.catena.2009.05.013]
52. Doerr SH, Shakesby RA., Dekker LW, Ritsema CJ. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur J Soil Sci. 2006;57(5):741-54. [Link] [DOI:10.1111/j.1365-2389.2006.00818.x]
53. Walsh RPD, Coelho COA, Elmes A, Ferreira AD, Bento-Gonçalves AJ, Shakesby RA, et al. Rainfall simulation plot experiments as a tool in overland flow and soil erosion assessment, North-central Portugal. Geoökodynamik. 1998;19(3-4):139-52. [Link]
54. Imeson AC, Verstraten JM, Van Mulligen EJ, Sevink J. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena. 1992;19(3-4):345-61. [Link] [DOI:10.1016/0341-8162(92)90008-Y]
55. Shakesby RA, Boakes DJ, Coelho COA, Bento Gonçalves AJ, Walsh RPD. Limiting the soil degradational impacts of wildfire in pine and eucalyptus forests in Portugal: A comparison of alternative post-fire management practices. Appl Geogr. 1996;16(4):337-55. [Link] [DOI:10.1016/0143-6228(96)00022-7]
56. Megahan WF, Molitor DC. Erosional effects of wildfire and logging in Idaho. Proceedings of the Symposium on Watershed Management. American Society of Civil Engineers, Irrigation and Drainage Division, Logan: UT; 1975; p. 423–44. [Link]
57. Meeuwig RO. Infiltration and soil erosion as influenced by vegetation and soil in Northern Utah. J Range Manag. 1970;23(3):185-8. [Link] [DOI:10.2307/3896384]
58. 58- Girona-García A, Ortiz-Perpi-á O, Badía-Villas D, Martí-Dalmau C. Effects of prescribed burning on soil organic C, aggregate stability and water repellency in a subalpine shrubland: Variations among sieve fractions and depths. Catena. 2018;166:68-77. [Link] [DOI:10.1016/j.catena.2018.03.018]
59. Rye CF, Smettem KRJ. Seasonal variation of subsurface flow pathway spread under a water repellent surface layer. Geoderma. 2018;327:1-12. [Link] [DOI:10.1016/j.geoderma.2018.04.008]
60. Abrantes JRCB, De Lima JLMP, Prats SA, Jacob Keizer J. Assessing soil water repellency spatial variability using a thermographic technique: An exploratory study using a small-scale laboratory soil flume. Geoderma. 2017;287:98-104. [Link] [DOI:10.1016/j.geoderma.2016.08.014]
61. Dekker LW, Ritsema CJ. Wetting patterns and moisture variability in water repellent Dutch soils. J Hydrol. 2000;231-232:148-64. [Link] [DOI:10.1016/S0022-1694(00)00191-8]
62. Urbanek E, Shakesby RA. Impact of stone content on water movement in water-repellent sand. Eur J Soil Sci. 2009;60(3):412-9. [Link] [DOI:10.1111/j.1365-2389.2009.01128.x]
63. Kobayashi M, Shimizu T. Soil water repellency in a Japanese cypress plantation restricts increases in soil water storage during rainfall events. Hydrol Process. 2007;21(17):2356-64. [Link] [DOI:10.1002/hyp.6754]
64. Urbanek E, Walsh RPD, Shakesby RA. Patterns of soil water repellency change with wetting and drying: The influence of cracks, roots and drainage conditions. Hydrol Process. 2015;29(12):2799-813. [Link] [DOI:10.1002/hyp.10404]
65. Carrick S, Buchan G, Almond P, Smith N. Atypical early-time infiltration into a structured soil near field capacity: The dynamic interplay between sorptivity, hydrophobicity, and air encapsulation. Geoderma. 2011;160(3-4):579-89. [Link] [DOI:10.1016/j.geoderma.2010.11.006]
66. Granged AJP, Jordán A, Zavala LM, Bárcenas G. Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire. Hydrol Process. 2011;25(10):1614-29. [Link] [DOI:10.1002/hyp.7923]
67. Ritsema CJ, Dekker LW, Nieber JL, Steenhuis TS. Modeling and field evidence of finger formation and finger recurrence in a water repellent sandy soil. Water Resour Res. 1998;34(4):555-67. [Link] [DOI:10.1029/97WR02407]
68. Bodí MB, Mu-oz-Santa I, Armero C, Doerr SH, Mataix-Solera J, Cerdà A. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena. 2013;108:14-25. [Link] [DOI:10.1016/j.catena.2012.04.002]
69. Osborn JF. Soil wettability as a factor in erodibility. Soil Sci Soc Am J. 1964;28(2):294-5. [Link] [DOI:10.2136/sssaj1964.03615995002800020050x]
70. Benavides-Solorio JD, Mac Donald LH. Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range. Int J Wildland Fire. 2005;14:457-74. [Link] [DOI:10.1071/WF05042]
71. Jungerius PD, Ten Harkel MJ. The effect of rainfall intensity on surface runoff and sediment yield in the grey dunes along the Dutch coast under conditions of limited rainfall acceptance. Catena. 1994;23(3-4):269-79. [Link] [DOI:10.1016/0341-8162(94)90072-8]
72. Moody JA, Martin DA. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surf Process Landf. 2001;26(10):1049-70. [Link] [DOI:10.1002/esp.253]
73. Mataix-Solera J, Doerr SH. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in Southeastern Spain. Geoderma. 2004;118(1-2):77-88. [Link] [DOI:10.1016/S0016-7061(03)00185-X]
74. Jordán A, Martínez-Zavala L, Bellinfante N. Heterogeneity in soil hydrological response from different land cover types in Southern Spain. Catena. 2008;74(2):137-43. [Link] [DOI:10.1016/j.catena.2008.03.015]
75. Shakesby RA, Doerr SH, Walsh RPD. The erosional impact of soil hydrophobicity: Current problems and future research directions. J Hydrol. 2000;231-232:178-91. [Link] [DOI:10.1016/S0022-1694(00)00193-1]
76. Booker FA, Dietrich WE, Collins LM. Runoff and erosion after the Oakland firestorm: Expectations and observations. Calif Geol. 1993;46(6):159-73. [Link]
77. Krammes JS, Osborn J. Water-repellent soils and wetting agents as factors influencing erosion. In: De Bano LF, Letey J, University of California, Riverside, Dry Lands Research Institute, editors. Water-repellent soils: Proceedings of the symposium on water-repellent soils held at the University of California, Riverside, May 6-10, 1968. Oakland: University of California; 1969. pp. 177-87. [Link]
78. Dal Ferro N, Berti A, Francioso O, Ferrari E, Matthews GP, Morari F. Investigating the effects of wettability and pore size distribution on aggregate stability: The role of soil organic matter and the humic fraction. Eur J Soil Sci. 2012;63(2):152-64. [Link] [DOI:10.1111/j.1365-2389.2012.01427.x]
79. Dekker LW, Ritsema CJ, Oostindie K, Boersma OH. Effect of drying temperature on the severity of soil water repellency. Soil Sci. 1998;163(10):780-96. [Link] [DOI:10.1097/00010694-199810000-00002]
80. Dekker LW, Ritsema CJ, Oostindie K, Moore D, Wesseling JG. Methods for determining soil water repellency on field-moist samples. Water Resour Res. 2009;45(4):W00D33. [Link] [DOI:10.1029/2008WR007070]
81. Oostindie K, Dekker LW, Wesseling JG, Ritsema CJ, Geissen V. Development of actual water repellency in a grass-covered dune sand during a dehydration experiment. Geoderma. 2013;204-205:23-30. [Link] [DOI:10.1016/j.geoderma.2013.04.006]
82. Ritsema CJ, Dekker LW, Oostindie K, Moore D, Leinauer B. Soil water repellency and critical soil water content. In: Logsdon SD, editor. Soil science: Step by step field analysis. Washington D C: ASA-CSSA-SSSA; 2008. pp. 97-112. [Link] [DOI:10.2136/2008.soilsciencestepbystep.c8]
83. Moore D, Kostka SJ, Boerth TJ, Franklin MA, Ritsema CJ, Dekker LW, et al. The effect of soil surfactants on soil hydrological behavior, the plant growth environment, irrigation efficiency and water conservation. J Hydrol Hydromech. 2010;58(3):142-8. [Link] [DOI:10.2478/v10098-010-0013-1]
84. Oostindie K, Dekker LW, Wesseling JG, Ritsema CJ. Improvement of water movement in an undulating sandy soil prone to water repellency. Vadose Zone J. 2011;10(1):262-9. [Link] [DOI:10.2136/vzj2010.0051]
85. Dekker LW, Ritsema CJ, Oostindie K, Wesseling JG, Geissen V. Effects of a soil surfactant on grass performance and soil wetting of a fairway prone to water repellency. Geoderma. 2018 Sep. [Link] [DOI:10.1016/j.geoderma.2018.09.016]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author