Volume 7, Issue 2 (2019)                   IQBQ 2019, 7(2): 87-95 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Javan S, Gholamalizadeh Ahangar A, Hassani A, Soltani J. Estimation of Zn Bonds Using Multi-Layer Perceptron (MLP) Artificial Neural Network Method in Chahnimeh, Zabol. IQBQ. 2019; 7 (2) :87-95
URL: http://journals.modares.ac.ir/article-24-17907-en.html
1- Environmental Health Department, Medical Sciences Faculty, Neyshabur University of Medical Sciences, Neyshabur, Iran
2- Soil Sciences Department, Soil & Water Engineering Faculty, Zabol University, Zabol, Iran , ahangar@uoz.ac.ir
3- Environmental Engineering Department, Environment & Energy Faculty, Tehran Science & Research Branch, Islamic Azad University, Tehran, Iran
4- Water Engineering Department, Water Engineering Faculty, Abureyhan Campus, University of Tehran, Tehran, Iran
Abstract:   (299 Views)
Aims: Artificial Neural Networks (ANNs) are powerful tools that are commonly used today in prediction deposit-related sciences. The research aimed at predicting various five links of heavy metals using the properties of deposit.
Materials and Methods: 180 samples of surface sediments were taken from the Chahnimeh reservoir and they were transferred to under standard conditions. Total Zinc concentration, deposit properties and Zinc five bonds with deposit were measured. Efficiency of the ANN and Perceptron (MLP) model to estimate the Zn following the measurement of parameters in the laboratory.
Findings: Five links were predicted with the aid of ANNs and MLP model. Deposit properties and total concentrations of heavy metals were considered as input and each of bonds were considered as output.
Conclusion: Ultimately, the ANN showed good performance in the predicting the determination of coefficients or R2 0.98 to 1) and root mean square error or RMSE (0.7 to 0.01).
Full-Text [PDF 549 kb]   (59 Downloads)    

Received: 2018/03/18
* Corresponding Author Address: Soil Sciences Department, Soil & Water Engineering Faculty, Zabol University, Zabol, Iran

References
1. Ahnstrom ZS, Parker DR. Development and assessment of a sequential extraction procedure for the fractionation of soil cadmium. Soil Sci Soc Am J. 1999;63(6):1650-8. [Link] [DOI:10.2136/sssaj1999.6361650x]
2. Alvarez MB, Garrido M, Lista AG, Fernández Band BS. Three-way multivariate analysis of metal fractionation results from sediment samples obtained by different sequential extraction procedures and ICP-OES. Anal Chim Acta. 2008;620(1-2):34-43. [Link] [DOI:10.1016/j.aca.2008.05.035]
3. Alonso Castillo ML, Vereda Alonso E, Siles Cordero MT, Cano Pavón JM, García De Torres A. Fractionation of heavy metals in sediment by using microwave assisted sequential extraction procedure and determination by inductively coupled plasma mass spectrometry. Microchem J. 2011;98(2):234-9. [Link] [DOI:10.1016/j.microc.2011.02.004]
4. Tuzen M, Sari H, Soylak M. Microwave and wet digestion procedures for atomic absorption spectrometric determination of trace metals contents of sediment samples. Anal Lett. 2004;37(9):1925-36. [Link] [DOI:10.1081/AL-120039436]
5. Singh KP, Malik A, Basant N, Singh VK, Basant A. Multi-way data modeling of heavy metal fractionation in sediments from Gomti river (India). Chemom Intell Lab Syst. 2007;87(2):185-93. [Link] [DOI:10.1016/j.chemolab.2007.01.001]
6. Salomons W, Förstner U. Trace metal analysis on polluted sediments, part II: Evaluation of environmental impact. Environ Technol Lett. 1980;1:506-17. [Link] [DOI:10.1080/09593338009384007]
7. Jumbe AS, Nandini N. Heavy metals analysis and sediment quality values in urban lakes. Am J Environ Sci. 2009;5(6):678-87. [Link] [DOI:10.3844/ajessp.2009.678.687]
8. Förstner U. Land contamination by metals Global scope and magnitude of problem. In: Allen HE, Huang CP, Bailey GW, Bowers AR, editors. Metal speciation and contamination of soil. Boca Raton: CRC Press; 1995. pp. 1-24. [Link]
9. Lu A, Zhang Sh, Shan XQ. Time effect on the fractionation of heavy metals in soils. Geoderma. 2005;125(3-4):225-34. [Link] [DOI:10.1016/j.geoderma.2004.08.002]
10. Ghaedi M, Ahmadi F, Soylak M. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples. J Hazard Mater. 2007;147(1-2):226-31. [Link] [DOI:10.1016/j.jhazmat.2006.12.070]
11. Nemati K, Abu Bakar NK, Radzi Abas M, Sobhanzadeh E. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J Hazard Mater. 2011;192(1):402-10. [Link] [DOI:10.1016/j.jhazmat.2011.05.039]
12. Pardo R, Barrado E, Lourdes P, Vega M. Determination and speciation of heavy metals in sediments of the Pisuerga river. Water Res. 1990;24(3):373-9. [Link] [DOI:10.1016/0043-1354(90)90016-Y]
13. Mortazavi S, Saberinasab F. Heavy metals assessment of surface sediments in Mighan wetland using the sediment quality index. Ecopersia. 2017;5(2):1761-70. [Link]
14. Quevauviller PH, Rauret G, Muntau H, Ure AM, Rubio R, LopezSanchez JF, Fiedler HD, Griepink B. Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius' J Anal Chem. 1994;349:808–814. [Link] [DOI:10.1007/BF00323110]
15. Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particular trace metal. Anal Chem. 1979;51(7):844-51. [Link] [DOI:10.1021/ac50043a017]
16. Cavalcante YL, Hauser-Davis RA, Saraiva AC, Brandão IL, Oliveira TF, Silveira AM. Metal and physico-chemical variations at a hydroelectric reservoir analyzed by multivariate analyses and artificial neural networks: Environmental management and policy/decision-making tools. Sci Total Environ. 2013;442:509-14. [Link] [DOI:10.1016/j.scitotenv.2012.10.059]
17. Turek M, Heiden W, Riesen A, Chhabda TA, Schubert J, Zander W, et al. Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors. Electrochimica Acta. 2009;54(25):6082-8. [Link] [DOI:10.1016/j.electacta.2009.03.035]
18. Brion GM, Neelakantan TR, Lingireddy S. A neural-network-based classification scheme for sorting sources and ages of fecal contamination in water. Water Res. 2002;36(15):3765-74. [Link] [DOI:10.1016/S0043-1354(02)00091-X]
19. Ha H, Stenstrom MK. Identification of land use with water quality data in stormwater using a neural network. Water Res. 2003;37(17):4222-30. [Link] [DOI:10.1016/S0043-1354(03)00344-0]
20. Alizamir M, Azhdary Moghadam M, Hashemi Monfared A, Shamsipour AA. A hybrid artificial neural network and particle swarm optimization algorithm for statistical downscaling of precipitation in arid region. Ecopersia. 2017;5(4):1991-2006. [Link]
21. Naresh Kumar R, Nagendran R. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans. J Hazard Mater. 2009;169(1-3):1119-26. [Link] [DOI:10.1016/j.jhazmat.2009.04.069]
22. Tanzifi M, Tavakoli Yaraki M, Dehghani Kiadehi A, Hosseini SH, Olazar M, Bharti AK, et al. Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: Experimental investigation and artificial neural network modeling. J Colloid Interface Sci. 2018;510:246-61. [Link] [DOI:10.1016/j.jcis.2017.09.055]
23. Lek S, Delacoste M, Baran P, Dimopoulos I, Lauga J, Aulagnier S. Application of neural networks to modelling nonlinear relationships in ecology. Ecol Model. 1996;90(1):39-52. [Link] [DOI:10.1016/0304-3800(95)00142-5]
24. Zupan J. Introduction to Artificial Neural Network (ANN) methods: What they are and how to use them. Acta Chimica Slovenica. 1994;41(3):327-52. [Link]
25. Schaap MG, Bouten W. Modeling water retention curves of sandy soils using neural networks. Water Resour Res. 1996;32(10):3033-40. [Link] [DOI:10.1029/96WR02278]
26. Bonakdari H, Baghalian S, Nazari F, Fazli M. Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm. Eng Appl Comput Fluid Mech. 2011;5(3):384-96. [Link] [DOI:10.1080/19942060.2011.11015380]
27. Azamathulla HM, Ghani AA, Fei SY. ANFIS-based approach for predicting sediment transport in clean sewer. Appl Soft Comput. 2012;12(3):1227-30. [Link] [DOI:10.1016/j.asoc.2011.12.003]
28. Moharrampour M, Kherad Ranjbar M, Abachi N, Zoghi M, Asadi Asadabad MR. Comparison of Artificial Neural Networks ANN and statistica in daily flow forecasting. Adv Environ Biol. 2012;6:863-8. [Link]
29. Malakootian M, Khashi Z. Heavy metals contamination of drinking water supplies in Southeastern villages of Rafsanjan plain: Survey of arsenic, cadmium, lead and copper. J Health Field. 2014;2(1):1-9. [Persian] [Link]
30. GamzeTuran N, Mesci B, Ozgonenel O. The use of Artificial Neural Networks (ANN) for modeling of adsorption of Cu(II) from industrial leachate by pumice. Chem Eng J. 2011;171(3):1091-7. [Link] [DOI:10.1016/j.cej.2011.05.005]
31. Sharifi AR, Dinpashoh Y, Fakheri Fard A, Moghaddamnia AR. Optimum combination of variables for runoff simulation in Amameh watershed using gamma test. Water Soil Sci. 2014;23(4):59-72. [Persian] [Link]
32. Mohammadi AA, Yousefi M, Soltani J, Gholamalizadeh Ahangar A, Javan S. Using the combined model of gamma test and neuro-fuzzy system for modeling and estimating lead bonds in reservoir sediments. Environ Sci Pollut Res. 2018;25(30):30315-24. [Link] [DOI:10.1007/s11356-018-3026-7]
33. Rajaei Gh, Mansouri B, Jahantigh H, Hamidian AH. Metal concentrations in the water of Chah nimeh reservoirs in Zabol, Iran. Bull Environ Contam Toxicol. 2012;89(3):495-500. [Link] [DOI:10.1007/s00128-012-0738-0]
34. Ure AM, Quevauviller PJ, Munta H, Griepink B. Speciation of heavy metals in soils and sediments: an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the emission of the European communities. Int J Environ Anal Chem. 1993;51(1-4):135-51. [Link] [DOI:10.1080/03067319308027619]
35. Dreyfus G, Martinez JM, Samuelides M, Gordon MB, Badran F, Thiria S. Statistical learning: Neural networks - topological maps - support vector machines. Paris: Eyrolles; 2011. [French] [Link]
36. Tino P, Benuskova L, Sperduti A. Artificial neural network models. In: Kacprzyk J, Pedrycz W, editors. Springer handbook of computational intelligence, springer handbooks. Berlin/Heidelberg: Springer; 2015. pp. 455-71. [Link] [DOI:10.1007/978-3-662-43505-2_27]
37. Garcia LA, Shigidi A. Using neural networks for parameter estimation in ground water. J Hydrol. 2006;318(1-4):215-31. [Link] [DOI:10.1016/j.jhydrol.2005.05.028]
38. Hecht-Nielsen R. Neurocomputing. Boston: Addison-Wesley; 1990. [Link]
39. Okunola OJ, Uzairu A, Gimba CE, Kagbu JA. Geochemical partitioning of heavy metals in roadside surface soils of different grain size along major roads in Kano metropolis, Nigeria. Br J Appl Sci Technol. 2011;1(3):94-115. [Link] [DOI:10.9734/BJAST/2011/184]
40. Zhan S, Peng S, Liu C, Chang Q, Xu J. Spatial and temporal variations of heavy metals in surface sediments in Bohai Bay, North China. Bull Environ Contam Toxicol. 2010;84(4):482-7. [Link] [DOI:10.1007/s00128-010-9971-6]
41. Li X, Poon C, Liu P. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem. 2001;16(11-12):1361-8. [Link] [DOI:10.1016/S0883-2927(01)00045-2]
42. Hickey MG, Kittrick JA. Chemical partitioning of cadmium, copper, nickel, and zinc in soils and sediments containing high levels of heavy metals. J Environ Qual. 1984;13(3):372-6. [Link] [DOI:10.2134/jeq1984.00472425001300030010x]
43. Jaradat QM, Massadeh AM, Zaitoun MA, Maitah BM. Fractionation and sequential extraction of heavy metals in the soil of scrapyard of discarded vehicles. Environ Monit Assess. 2006;112(1-3):197-210. [Link] [DOI:10.1007/s10661-006-0356-6]
44. El Badaoui H, Abdallaoui A, Manssouri I, Lancelot L. Application of the artificial neural networks of MLP type for the prediction of the levels of heavy metals in Moroccan aquatic sediments. Int J Comput Eng Res. 2013;3(6):75-81. [Link]
45. Manssouri I, El Hmaidi A, Manssouri TE, El Moumni B. Prediction levels of heavy metals (Zn, Cu and Mn) in current Holocene deposits of the Eastern part of the Mediterranean Moroccan margin (Alboran sea) IOSR J Comput Eng. 2014;16(1):117-23. [Link] [DOI:10.9790/0661-1618117123]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author