Volume 6, Issue 1 (2018)                   IQBQ 2018, 6(1): 31-40 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ramezanzade L, Hosseini S, Nikkhah M, Arab-Tehrany E. Recovery of Bioactive Peptide Fractions from Rainbow Trout (Oncorhynchus mykiss) Processing Waste Hydrolysate. IQBQ. 2018; 6 (1) :31-40
URL: http://journals.modares.ac.ir/article-24-17233-en.html
1- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
2- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran , hosseinisf@modares.ac.ir
3- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
4- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye–BP 20163, 54505 Vandoeuvre- lès-Nancy, France
Abstract:   (863 Views)
Aims: Bioactive peptides with antioxidant properties derived from fish by-products and wastes by enzymatic hydrolysis have become a topic of great interest for pharmaceutical, health food, and processing/preservation industries. Materials & Methods This study aimed to characterize peptide fractions with antioxidative activity recovered from rainbow trout gelatin hydrolysate. Four peptide fractions (<3 kDa, 3–10 kDa, 10–30 kDa, and >30 kDa) were obtained from gelatin hydrolysate by subjecting them to centrifugal ultrafiltration using successively a 30 kDa, 10 kDa, and a 3 kDa membrane. The
10–30 kDa fraction was characterized in terms of amino acid composition. The antioxidant activity of all fractions was monitored by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging as well as reducing power activity.
Findings: The free amino acids in 10–30 kDa fraction were dominated by Gly, Pro, Ala, and Hyp; the total hydrophobic amino acid of 10–30 kDa fraction was also 61.5%. All hydrolysate and peptidic fractions demonstrated high antioxidant activities. Moreover, 10–30 kDa fraction exhibited the highest DPPH and ABTS radical scavenging activity (2, 5, and 10 mg ml−1) and reducing power (10 mg ml−1) compared to other fractions (p<0.05).
Conclusion: These results revealed the potential of peptide fractions recovered from rainbow trout skin gelatin as source of natural antioxidants for use in food products.
Full-Text [PDF 661 kb]   (195 Downloads)    

Received: 2017/08/6 | Accepted: 2018/01/8 | Published: 2018/03/30
* Corresponding Author Address: Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran

References
1. Lordan S, Ross RP, Stanton C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar Drugs. 2011;9(6):1056-100. [Link] [DOI:10.3390/md9061056]
2. Honkanen P. Consumer acceptance of (marine) functional food. In: Luten JB, editor. Marine functional food. wageningen: Wageningen Academic Pub; 2009. pp. 141-54. [Link]
3. Siro I, Kápolna E, Kápolna B, Lugasi A. Functional food, Product development, marketing and consumer acceptance--A review. Appetite. 2008;51(3):456-67. [Link] [DOI:10.1016/j.appet.2008.05.060]
4. Jafarpour SA, Shabanpour B, Shirvani Filabadi S. Biochemical properties of fish protein isolate (FPI) from Silver carp (Hypophthalmichthys molitrix) by application of acid-alkali processes compared to traditional prepared surimi. ECOPERSIA. 2013;1(3):315-27. [Link]
5. Wasswa J, Tang J, Gu XH, Yuan XQ. Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chem. 2007;104(4):1698-704. [Link] [DOI:10.1016/j.foodchem.2007.03.044]
6. Rahman MSh, Al-Saidi GhS, Guizani N. Thermal characterisation of gelatin extracted from yellowfin tuna skin and commercial mammalian gelatin. Food Chem. 2008;108(2):472-81. [Link] [DOI:10.1016/j.foodchem.2007.10.079]
7. Ngo DH, Ryu B, Vo TS, Himaya SW, Wijesekara I, Kim SK. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. Int J Biol Macromol. 2011;49(5):1110-6. [Link] [DOI:10.1016/j.ijbiomac.2011.09.009]
8. Ngo DH, Ryu B, Kim SK. Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food chem. 2014;143:246-55. [Link] [DOI:10.1016/j.foodchem.2013.07.067]
9. Food and Agriculture Organization of the United Nations. National aquaculture sector overview, Iran (Islamic Republic of) [Internet]. Rome: Food and Agriculture Organization of the United Nations; 2005 [Cited 2017; Mar]. Available from: http://www.fao.org/fishery/countrysector/naso_iran/en. [Link]
10. Tabarestani HS, Maghsoudlou Y, Motamedzadegan A, Mahoonak AS. Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchus mykiss). Bioresour Technol. 2010;101(15):6207-14. [Link] [DOI:10.1016/j.biortech.2010.02.071]
11. Kittiphattanabawon P, Benjakul S, Visessanguan W, Shahidi F. Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: Antioxidant activity and its potential in model systems. Food Chem. 2012;135(3):1118-26. [Link] [DOI:10.1016/j.foodchem.2012.05.080]
12. Ramezanzade L, Hosseini SF. Nikkhah M. Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chem. 2017;234:220-9. [Link] [DOI:10.1016/j.foodchem.2017.04.177]
13. Betoret E, Betoret N, Vidal D, Fito P. Functional foods development: Trends and technologies. Trends Food Sci Technol. 2011;22(9):498-508. [Link] [DOI:10.1016/j.tifs.2011.05.004]
14. Girgih AT, He R, Hasan FM, Udenigwe ChC, Gill TA, Aluko RE. Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions. Food Chem. 2015;173:652-9. [Link] [DOI:10.1016/j.foodchem.2014.10.079]
15. Weng W, Tang L, Wang B, Chen J, Su W, Osako K, et al. Antioxidant properties of fractions isolated from blue shark (Prionace glauca) skin gelatin hydrolysates. J Funct Foods. 2014;11:342-51. [Link] [DOI:10.1016/j.jff.2014.10.021]
16. Kumar NS, Nazeer RA, Jaiganesh R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids. 2012;42(5):1641-9. [Link] [DOI:10.1007/s00726-011-0858-6]
17. Jridi M, Lassoued I, Nasri R, Ayadi MA, Nasri M, Souissi N. Characterization and potential use of cuttlefish skin gelatin hydrolysates prepared by different microbial proteases. Bio Med Res Int. 2014;2014:461728. [Link]
18. Mendis E, Rajapakse N, Kim SK. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agric Food Chem. 2005;53(3):581-7. [Link] [DOI:10.1021/jf048877v]
19. Yang JI, Ho HY, Chu YJ, Chow CJ. Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chem. 2008;110(1):128-36. [Link] [DOI:10.1016/j.foodchem.2008.01.072]
20. Alemán A, Giménez B, Montero P, Gómez-Guillén MC. Antioxidant activity of several marine skin gelatins. LWT Food Sci Technol. 2011;44(2):407-13. [Link] [DOI:10.1016/j.lwt.2010.09.003]
21. Da Rosa Zavareze E, Telles AC, El Halal SL, da Rocha M, Colussi R, de Assis LM, et al. Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT Food Sci Technol. 2014;59(2):841-8. [Link] [DOI:10.1016/j.lwt.2014.05.013]
22. Taheri A, Sabeena Farvin KH, Jacobsen C, Baron CP. Antioxidant activities and functional properties of protein and peptide fractions isolated from salted herring brine. Food Chem. 2014;142:318-26. [Link] [DOI:10.1016/j.foodchem.2013.06.113]
23. Songchotikunpan P, Tattiyakul J, Supaphol P. Extraction and electrospinning of gelatin from fish skin. Int J Biol Macromol. 2008;42(3):247-55. [Link] [DOI:10.1016/j.ijbiomac.2007.11.005]
24. Muyonga JH, Cole CGB, Duodu KG. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chem. 2004;85(1):81-9. [Link] [DOI:10.1016/j.foodchem.2003.06.006]
25. Mosquera M, Giménez B, da Silva IM, Boelter JF, Montero P, Gómez-Guillén MC, et al. Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chem. 2014;156:144-50. [Link] [DOI:10.1016/j.foodchem.2014.02.011]
26. He R, Girgih AT, Malomo SA, Ju X, Aluko RE. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. J Funct Foods. 2013;5(1):219-27. [Link] [DOI:10.1016/j.jff.2012.10.008]
27. Montero P, Gómez-Guillén MC. Extracting conditions for megrim (Lepidorhombus boscii) skin collagen affect functional properties of the resulting gelatin. J Food Sci. 2000;65(3):434-8. [Link] [DOI:10.1111/j.1365-2621.2000.tb16022.x]
28. Bougatef A, Hajji M, Balti R, Lassoued I, Triki-Ellouz Y, Nasri M. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chem. 2009;114(4):1198-205. [Link] [DOI:10.1016/j.foodchem.2008.10.075]
29. Bamdad F, Wu J, Chen L. Effects of enzymatic hydrolysis on molecular structure and antioxidant activity of barley hordein. J Cereal Sci. 2011;54(1):20-8. [Link] [DOI:10.1016/j.jcs.2011.01.006]
30. Cheung IW, Cheung LK, Tan NY, Li-Chan EC. The role of molecular size in antioxidant activity of peptide fractions from Pacific hake (Merluccius productus) hydrolysates. Food Chem. 2012;134(3):1297-306. [Link] [DOI:10.1016/j.foodchem.2012.02.215]
31. You L, Zhao M, Cui C, Zhao H, Yang B. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innov Food Sci Emerg Technol. 2009;10(2):235-40. [Link] [DOI:10.1016/j.ifset.2008.08.007]
32. Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int. 2005;38(2):175-82. [Link] [DOI:10.1016/j.foodres.2004.10.002]
33. Wang B, Li ZR, Chi CF, Zhang QH, Luo HY. Preparation and evaluation of antioxidant peptides from ethanol-soluble proteins hydrolysate of Sphyrna lewini muscle. Peptides. 2012;36(2):240-50. [Link] [DOI:10.1016/j.peptides.2012.05.013]
34. Morales-Medina R, Tamm F, Guadix AM, Guadix EM, Drusch S. Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food Chem. 2016;194:1208-16. [Link] [DOI:10.1016/j.foodchem.2015.08.122]
35. Farvin KS, Andersen LL, Otte J, Nielsen HH, Jessen F, Jacobsen C. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions. Food Chem. 2016;204:409-19. [Link] [DOI:10.1016/j.foodchem.2016.02.145]
36. Morales-Medina R, Tamm F, Guadix AM, Guadix EM, Drusch S. Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food Chem. 2016;194:1208-16. [Link] [DOI:10.1016/j.foodchem.2015.08.122]
37. Farvin KS, Andersen LL, Otte J, Nielsen HH, Jessen F, Jacobsen C. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions. Food Chem. 2016;204:409-19. [Link] [DOI:10.1016/j.foodchem.2016.02.145]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author