Volume 6, Issue 2 (2018)                   IQBQ 2018, 6(2): 121-130 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharma U, Sharma V. Greenhouse Gas Inventory Estimates from Agriculture Sector in ‎Jammu and Kashmir State of India. IQBQ. 2018; 6 (2) :121-130
URL: http://journals.modares.ac.ir/article-24-15895-en.html
1- ‎Department of Soil Science, Faculty of Agriculture, Centre for Natural Resources Management, India‎ , ucsharma2@rediffmail.com
2- ‎Department of Soil Science, Faculty of Agriculture, Agricultural Sciences & Technology University, ‎Chatha, Punjab, India
Abstract:   (91 Views)
Aims: Greenhouse gas (GHG) emission estimates were made from agriculture sector in Jammu and Kashmir to assess the 2015 situation and future trends in emission which would help in formulating a policy for mitigation.
Materials and Methods: The Intergovernmental Panel on Climate Change (IPCC) tier-II methodology (IPCC, 1997) has been adopted for estimating methane (CH4) emissions from enteric fermentation in livestock and Tier-I methodology for other sectors of agriculture for GHG emission.
Findings: Agriculture in J and K accounted for a total GHG emission of 5.411 Tg of carbon dioxide (CO2)e in the year 2015. Source-wise, enteric fermentation was responsible for emittance of 160.233 Gg of CH4 and 1.399 Gg of nitrous oxide (N2O), manure management for 8.25 Gg of CH4 and 0.276 Gg of N2O, rice cultivation for 28.75 Gg of CH4, cultivated soils for 1.988 Gg of N2O, and residue burning for 0.405 Gg of CH4, 0.029 Gg of N2O, and 118.01 Gg of CO2.
Conclusion: Higher GHG emission from enteric fermentation was mainly due to higher population of livestock in the state. The most effective methods for reducing GHG emissions in the state would be to adjust the part of animal feed to decrease digestion time, using feed additives to reduce metabolic activity of rumen bacteria that produce CH4, and increase nitrogen-use efficiency by applying nitrogenous fertilizer or manure to crops as per crop needs and time of need.
Full-Text [PDF 646 kb]   (31 Downloads)    
Article Type: مقاله Ø§Ø³ØªØ®Ø±Ø§Ø Ø´Ø¯Ù‡ از پایان نامه |
Received: 2018/01/19 | Accepted: 2018/07/17 | Published: 2018/07/17
* Corresponding Author Address: Centre for Natural Resources Management, V.P.O Tarore, District Jammu-181133, Jammu & Kashmir, India.‎

References
1. Sharma S, Bhattacharya S, Garg A. Greenhouse gas emissions from India: A perspective. Curr Sci. ‎‎2006;90(3):326-33.‎ [Link]
2. Sharma SK, Choudhury A, Sarkar P, Biswas S, Singh A, Dadhich PK, et al. Greenhouse gas inventory ‎estimates for India. Curr Sci. 2011;101(3):405-15.‎ [Link]
3. Paustian K, Andrén O, Janzen HH, Lal R, Smith P, Tian G, et al. Agricultural soils as a sink to mitigate ‎CO2 emissions. Soil Use Manag. 1997;13(s4):230-44.‎ [Link]
4. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma. 2004;123(1-2):1-22.‎ [Link] [DOI:10.1016/j.geoderma.2004.01.032]
5. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, et al, editors. Climate change 2007 the ‎physical science basis [Internet]. Cambridge: Cambridge University Press; 2007 [Cited 2017 Mar 19]. ‎Available from: ‎https://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_‎the_physical_science_basis.htm.‎ [Link]
6. Sethi M. Decoding urban India's carbon footprint: Spatial-numerical mapping of thermal energy ‎emissions. Curr Sci. 2015;108(9):1616-23.‎ [Link]
7. Motiee H, McBean E. Assessment of climate change impacts on groundwater recharge for different ‎soil types-guelph region in Grand River Basin, Canada. Ecopersia. 2017;5(2):1731-44.‎ [Link]
8. Kanitkar T, Jayaraman T, D'Souza M, Purkayastha P. Carbon budgets for climate change mitigation - a ‎GAMS-based emissions model. Curr Sci. 2013;104(9):1200-6.‎ [Link]
9. Battle M, Bender M, Sowers T, Tans PP, Butler JH, Elkins JW, et al. Atmospheric gas concentrations ‎over the past century measured in air from firn at the South Pole. Nature. 1996;383:231-35.‎ [Link]
10. Li C, Mosier A, Wassmann R, Cai Z, Zheng X, Huang Y, et al. Modeling greenhouse gas emissions ‎from rice-based production systems: Sensitivity and upscaling. Glob Biogeochem Cycles. ‎‎2004;18(1):GB1043.‎ [Link]
11. Li C, Frolking S, Crocker GJ, Grace PR, Klir J, Korcdhens M, et al. Simulating trends in soil organic ‎carbon in long-term experiments using the DNDC model. Geoderma. 1997;81(1-2):45-60.‎ [Link]
12. El-Ashry M, Seyfert-Margolis V. Uncertainty should be powerful motivator on climate, expert says. ‎Science. 2010;328(5978):586.‎ [Link]
13. Linquist BA, Adviento-Borbe MA, Pittelkow CM, Van Kessel C, Van Groenigen KJ. Fertilizer ‎management practices and greenhouse gas emissions from rice systems: A quantitative review and ‎analysis. Field Crop Res. 2012;135:10-21.‎ [Link] [DOI:10.1016/j.fcr.2012.06.007]
14. Eitelberg DA, Van Vliet J, Verburg, PH. A review of global potentially available cropland estimates ‎and their consequences for model-based assessments. Glob Chang Biol. 2015;21(3):1236-48.‎ [Link] [DOI:10.1111/gcb.12733]
15. Akhter R, Acharya R. Changes in cropping pattern in Jammu and Kashmir. Int J Adv Res Educ ‎Technol. 2015;2(4):88-91.‎ [Link]
16. Skiba U, Rees B. Nitrous oxide, climate change and agriculture. CAB Rev. 2014;9(010):1-7.‎ [Link]
17. Swamy M, Bhattacharya S. Budgeting anthropogenic greenhouse gas emission from Indian ‎livestock using country-specific emission coefficients. Curr Sci. 2006;91(10):1340-53. ‎ [Link]
18. Bouwman AF. Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst. ‎‎1996;46(1):53-70.‎ [Link] [DOI:10.1007/BF00210224]
19. Wang SY, Huang DJ. Assessment of greenhouse gas emissions from poultry enteric fermentation. ‎Asian-Australas J Anim Sci. 2005;18(6):873-78.‎ [Link] [DOI:10.5713/ajas.2005.873]
20. Pathak H, Saharawat YS, Gathala M, Ladha JK. Impact of resource-conserving technologies on ‎productivity and greenhouse gas emission in rice-wheat system. Greenh Gas Sci Technol. ‎‎2011;1(3):261-77.‎ [Link]
21. Akagi SK, Yokelson RJ, Wiedinmyer J, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO. ‎Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem ‎Phys. 2011; 11(9):4039–72.‎ [Link]
22. Moeletsi ME, Tongwan, MI. 2004 methane and nitrous oxide emissions from manure management ‎in South Africa. Animals(Basel). 2015.5(2):193-205.‎ [Link]
23. Colls JJ. Exchange of trace gases between terrestrial ecosystem and the atmosphere. Weather. ‎‎1990;45(11):416.‎ [Link] [DOI:10.1002/j.1477-8696.1990.tb05572.x]
24. Intergovernmental Panel on Climate Change (IPCC). Revised 1996 IPCC guidelines for national ‎greenhouse gas inventories [Internet]. Geneva: IPCC; 1996 [Cited 2017 Mar 19]. Available from: ‎https://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html.‎ [Link]
25. Metay A, Oliver R, Scopel E, Douzet JM, Moreira JAA, Maraux F, et al. N2O and CH4 emissions from ‎soils under conventional and no-till management practices in Goiânia (Cerrados, Brazil). Geoderma. ‎‎2007;141(1-2):78–88.‎ [Link]
26. Ministry of New and Renewable Energy. Annual report 2008-09 [Internet]. New Delhi: MNRE; 2009 ‎‎[Cited 2017 Feb 11]. Available from: https://mnre.gov.in/file-manager/annual-report/2008-‎‎2009/EN/overview.htm.‎ [Link]
27. Williams JW, Jackson, ST. Novel climates, no-analog communities, and ecological surprises. Front ‎Ecol Environ. 2007;5(9):475-82.‎ [Link] [DOI:10.1890/070037]
28. Morgan JA, Derner JD, Milchunas DG, Pendall E. Management implications of global change for ‎great plains rangelands. Rangelands. 2008;30(3):18-22. ‎ [Link] [DOI:10.2111/1551-501X(2008)30[18:MIOGCF]2.0.CO;2]
29. Battisti DS, Naylor RL. Historical warnings of future food insecurity with unprecedented seasonal ‎heat. Science. 2009;323(5911):240-4.‎ [Link] [DOI:10.1126/science.1164363]
30. Toet S, Ineson P, Peacock S, Ashmore M. Elevated ozone reduces methane emissions from peatland ‎mesocosms. Glob Chang Biol. 2011;17(1):288-96.‎ [Link] [DOI:10.1111/j.1365-2486.2010.02267.x]
31. Karasov WH, del Rio CM, Caviedes-Vidal E, Ecological physiology of diet and digestive systems. ‎Annu Rev Physiol. 2011;73:69-93.‎ [Link] [DOI:10.1146/annurev-physiol-012110-142152]
32. Robinson JA, Smolenski WJ, Ogilvie ML, Peters JP. In vitro total gas, CH4, H2, volatile fatty acid and ‎lactate kinetics studies on luminal contents from the small intestine, cecum and colon of the pig. Appl ‎Environ Microbiol. 1989;55(10):2460-7.‎ [Link]
33. Cao M, Dent JB, Heal OW. Modeling methane emissions from rice paddies. Glob Biogeochem ‎Cycles. 1995;9(2):183-95.‎ [Link]
34. Pathak H, Li C, Wassmann R. Greenhouse gas emissions from Indian rice fields: Calibration and ‎upscaling using the DNDC model. Biogeosciences. 2005;2:113-23.‎ [Link] [DOI:10.5194/bg-2-113-2005]
35. Bhatia A, Pathak H, Aggarwal PK. Inventory of methane and nitrous oxide emissions from ‎agricultural soils of India and their global warming potential. Curr Sci. 2004;87(3):317-24.‎ [Link]
36. Kusin FM, Mat Akhir N, Mohamat-Yusuff F, Awang M. The impact of nitrogen fertilizer use on ‎greenhouse gas emissions in an oil palm plantation associated with land use change. Atmósfera. ‎‎2015;28(4):243-50.‎ [Link] [DOI:10.20937/ATM.2015.28.04.03]
37. Eichner MJ. Nitrous oxide emissions from fertilized soils: Summary of available data. J Environ ‎Qual. 1990;19(2):272-80.‎ [Link]
38. Van Groenigen KJ, Osenberg CW, Hungate BA. Increased soil emissions of potent greenhouse gases ‎under increased atmospheric CO2. Nature. 2011;475:214-16.‎ [Link] [DOI:10.1038/nature10176]
39. Cassman KG, Dobermann A, Walters DT. Agroecosystems, nitrogen-use efficiency, and nitrogen ‎management. Ambio. 2002;31(2):132-40.‎ [Link] [DOI:10.1579/0044-7447-31.2.132]
40. Shcherbak I, Millar N, Robertson GP. Global metaanalysis of the nonlinear response of soil nitrous ‎oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci U S A. 2014;111(25):9199-204.‎ [Link] [DOI:10.1073/pnas.1322434111]
41. Badarinath KVS, Kiran Chand TR, Krishna Prasad V. Agriculture crop residue burning in the indo-‎gangetic plains: A study using IRS-P6 AWiFS satellite data. Curr Sci. 2006;91(8):1085-9.‎ [Link]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author