Prediction of Airport Noise Using CadnaA Model and GIS: Case Study of IKIA Airport

Maryam Kiani Sadr

1 Assistant Professor, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

*Corresponding author: Assistant Professor, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran, Tel: +98 912 818 7223, E-mail: mkianysadr@gmail.com

Received: 25 April 2017 / Accepted: 13 July 2017 / Published Online: 31 December 2017

1. Background

Different aspects of noise can be surveyed using various methods and sources, such as was done in one study on prediction of noise levels using a back propagation algorithm (1). Exposure to airport noise can have identifiable impacts on health that range from behavioural effects to annoyance (2), to high blood pressure (3). A general understanding of how sound affects the people around an airport requires measurement methods to assess aircraft noise (4). The current study was undertaken to examine environmental noise pollution and noise from Imam Khomeini International Airport (IKIA) in Tehran, Iran. This study also surveyed land use assessment around the airport by employing CadnaA, an aircraft noise simulation model. In order to supply the required information for both local and global action...
plans, noise mapping is important (5, 6). INM and CadnaA are widely-used software programs for prediction of airport noise and CadnaA was used for analysis in the current study. The noise modeling performed in this study was completed in accordance with the Standard Method of Computing Noise Contours around Civil Airports (7,8). In this report, CadnaA was used to estimate noise and the L_{DEN} metric as the noise descriptor for analysis of noise exposure areas.

2. Objective
The current study addresses noise exposure that results from aircraft operations at Imam Khomeini International Airport, 30 km southwest of Tehran (9), which is the busiest international air passenger gateway to Iran. The map of standard instrument departures (SIDs) and standard terminal arrival routes (STARs) of IKIA was overlaid with a 1:50,000 topographic map. The study area and noise sampling stations were then determined according to the flight paths and interference in residential areas.

3. Material and Methods
The methodology of this study on aircraft noise was carried out as part of the Standard Method of Computing Noise Contours around Civil Airports (ECAC.CEAC, Doc 29, 2-3 July, 1997). CadnaA software was used to ensure that the study incorporated the most recent European and international standards, methodologies, ISOs and a relevant data base (10).

A strategic noise map (SNM) was designed to identify IKIA’s present and future noise models as well as land use which is not compatible with the noise models. The SNM serves as a standard reference with regard to irritation and proposes sensitive development in the vicinity of the airport. The existing conditions SNM reflects airport operating conditions in 2015, the 10-year and 20-year SNMs reflect anticipated operation and development at IKIA in 2025 and 2035. Different runway layouts were used in each scenario.

CadnaA uses as input information about the airfield configuration, flight track locations, aircraft fleet mix, analytic aircraft traffic data per day/runway/flight path, aircraft climb and descent profiles, runway utilization, distribution of aircraft types in categories of day/hour/runway/flight paths in the three periods of the day, evening and night and the number of daily operations (Table 2). At IKIA, 60% of the landing and take-off procedures operate from the west on runways 29L/R and 30L/R.

<table>
<thead>
<tr>
<th>Table 1 Scenarios showing characteristics in airport noise modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1 (In 2015)</td>
</tr>
<tr>
<td>Runway</td>
</tr>
<tr>
<td>11L / 29R</td>
</tr>
<tr>
<td>Scenario 2 (In 2025)</td>
</tr>
<tr>
<td>Runway</td>
</tr>
<tr>
<td>93 Mpax</td>
</tr>
<tr>
<td>Scenario 3 (In 2035)</td>
</tr>
<tr>
<td>Runway</td>
</tr>
<tr>
<td>R: Right L: Left</td>
</tr>
</tbody>
</table>

1934
Table 2 Percentage of Aircraft Operations PER Period of the Day

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Existing</th>
<th>Mid-Term</th>
<th>Long-Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>65%</td>
<td>66%</td>
<td>70%</td>
</tr>
<tr>
<td>Evening</td>
<td>15%</td>
<td>17%</td>
<td>15%</td>
</tr>
<tr>
<td>Night</td>
<td>20%</td>
<td>17%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Being a leading software for assessment and prediction of environmental noise, CadnaA can handle noise calculation and noise mapping projects of any size. A model was set using CadnaA and remote sensing (RS) software to further the aims of the study. The exit radials in CadnaA for the present study were the flight tracks by the various aircraft accommodated at IKIA. A georeferenced GIS database was built in Envi (RS software) comprising topography data, land use, the results of the model and project data. The results were used to develop a weighted overlay map of land use and CadnaA output. The following software and instruments were used for satellite data processing and GIS analysis: Envi for image analysis and mapping, ArcGIS for database creation, analysis and map composition and a hand-held GPS for ground verification. The work was carried out by visual image interpretation. This method was done using 47 classes in order to establish a good representation of the various land-use classes in a continuous overlay of NEM and the land use map.

The parameter of noise used was L_{DEN}, which is commonly used in valid research (11). Face-to-face interviews were carried out by canvassing door-to-door in the permitted survey sites near IKIA. To calculate the number of questionnaires required, locations that were more exposed to aircraft noise during landing and takeoff were studied and homes in these areas were randomly selected for the questionnaire. Five experienced interviewers who were trained to fully understand and administer the questionnaire visited approximately 300 houses from 7 March 2015 to 8 February 2015. The effective sample size was 281 volunteer participants aged 18 to 68 years. The questionnaire comprised six sections. General noise perceptions occurred on a daily basis and were addressed in sections 1 and 5. The questions were designed based on previous aircraft noise studies and real situations at IKIA. Twenty questionnaire items were designed using a 7-point Likert scale. (1: unlikely, 4: neutral and 7: likely) to make it easy for participants to formulate responses (12). Sections 2 to 4 inquired about individual noise tolerance levels around a hypothetical airport. Section 6 obtained personal information, including the individual’s income and age. The information on general noise awareness was used (e.g. irritation from road, rail and air traffic), the general noise sensitivity from Sections 1 and 5 and the personal information from Section 6. After screening the information, the data were validated for further analysis (2).

L_{DEN}, as a contextual variable, is expected to have a positive effect on irritation caused by aircraft noise. This relates to the hypothesis that an individual will become more irritated as they are exposed to higher levels of aircraft noise [13, 14].

3. Results

Noise contours are lines overlaid on a land use map that connect points of equal sound levels. For instance, a 60 dB$_A$ contour is drawn by connecting all points on a grid with L_{DEN} values of 60 dB$_A$. Generally, noise contours are plotted at 5 dB$_A$ intervals, beginning with the noise compatibility L_{DEN} threshold of 65 dB$_A$. Part 150 of the Land Use Compatibility Guidelines define noise sensitive land use.
above a DNL of 65 dB to be incompatible for airports and noise-sensitive uses below DNL 65 dB are considered to be compatible “without restrictions”. The results of the aircraft noise modeling in CadnaA for all scenarios are given in the noise exposure maps in Figures 1 to 3.

In Scenario 2015, the contours extend west and east because of the high percentage of airport operations arriving on Runway 29R, departing from Runway 29R and departing from Runway 11. The L_{DEN} contour extends beyond the airport boundary into local neighborhoods in these two directions.

Figure 2 shows the NEM for scenario 2025 at IKIA airport. As for scenario 2015, the contours extend to the west and east. The L_{DEN} contour extends beyond the airport boundary and into neighborhoods in these two directions. The 2025 NEM shows that highest percentage of airport operations arriving at runways 29R and 11R.

Figure 3 shows the NEM for scenario 2035 at the IKIA airport. As for scenarios 2015 and 2025, the contours extend to the west and east. The 2035 NEM shows that the highest percentage of airport operations arriving at Runways 29R and 30R.

Figure 1 IKIA Airport NEM 2015, noise index L_{DEN} (Modeling by CadnaA)
Prediction of Airport Noise using CadnaA Model and GIS

ECOPERSIA (2017) Vol. 5(4)

Figure 2 IKIA Airport NEM 2025, noise index L_{DEN} (Modeling by CadnaA)

Figure 3 IKIA Airport NEM 2035, noise index L_{DEN} (Modeling by CadnaA)
Conflicts with the existing and future communities in the vicinity as well as providing sufficient flexibility for development of the airport must be considered by urban development management in the area surrounding IKIA airport.

Structural modeling of the questionnaire was estimated using AMOS.7. There were four hypotheses to be analyzed:

- H1: Aircraft noise irritation
- H2: Noise sensitivity
- H3: Affluent status
- H4: Irritation by other sources

4. Discussion

The result showed that the noise sensitivity construct had a highly significant effect on aircraft noise irritation (H1; p < 0.01), which was consistent with that of Taylor’s (15). A positive effect for noise sensitivity from other noise sources was also significant (H2; p < 0.01). This finding is consistent with the findings of Horonjeff (16) and Girvin (17). The result showed that affluence had a positively significant effect on aircraft noise irritation (H3; p < 0.01), which was in correspondence with another study that found the people living in the area of the greatest affluence were significantly more irritated by aircraft noise (18). Affluence had an insignificant effect on irritation caused by other noise sources (H4: p = 0.441), which was consistent with other studies (15, 16, 17, 18, 19).

5. Conclusion

The responses of residents exposed to aircraft noise around IKIA were quantified using the CadnaA model and Arc GIS software. The results show that CadnaA was able to simulate and predict noise changes in different scenarios. The results indicate that if urban development around IKIA in the 2025 and 2035 scenarios materializes, residents of these urban areas will encounter with high levels of aircraft noise. Urban development around the airport as well as increases in the number of flights and runways at IKIA should be carefully studied. The results of the questionnaires indicate a high correlation coefficient for L_{DEN} values and irritation levels from aircraft noise.

Conflicting of Interests

There are no conflicts of interest with respect to the Islamic Azad University Hamedan.

Acknowledgement

The author wishes to thank the people at IKIA Airport who kindly accepted to help in this survey and we are very grateful for suggestions and comments from the technical staff.

Authors’ Contributions

The author contributed to the development of the paper.
Funding/Support
This paper didn’t have funding for performance.

References

10. AzB. Neue zivile flugzeugklassen für die anleitung zur berechnung von lärmschutzbereichen (Entwurf), Berlin: Umweltbundesamt. 1999; p.135.

18. Zaporozhets O. Tokarev V, Attenborough K. Aircraft Noise Assessment, prediction and
پیش بینی صدا فرودگاه با استفاده از مدل GIS و CadnaA

مقدمه: مسئله الودگی صدا فرودگاه برای جوی خروج اطراف فرودگاه دارای اهمیت زیادی می باشد. موانع و روش‌ها: این مطالعه به پیش بینی صدا فرودگاه با کاربرد سنجش از دو سیستم اطلاعات جغرافیایی و تلفیق با نرم‌افزار CadnaA می باشد. برای تخمین اثرات بالقوه و عواقب ناشی از صدای هواپیما در محیط مطالعاتی مورد بررسی قرار گرفته است. فرودگاه امام خمینی در ایران (که به عنوان فرودگاه بزرگ در نظر گرفته گردیده) مورد بررسی قرار گرفته است. نتایج مدل سالی صدای هواپیما با استفاده از نرم‌افزار CadnaA است. فرودگاه تحت شبکه NEM در دامنه صدا در محیط یک هزینه صذر است.

مطالعات کلیدی: CadnaA, الودگی صدا فرودگاه، سیستم اطلاعات جغرافیایی، فرودگاه، امام خمینی.

نتایج: نتایج نشان داد که مدل CadnaA به خوبی می تواند نگیبان صدا فرودگاه یا در سال‌های مختلف پرواز شیب‌سازی و پیش‌بینی نماید. نتایج روز هواگردانی تخمین‌دهنده نشان دهنده ماهواره‌ای است. این مدل به‌طور کلی در سطح صدا فرودگاه و همچنین برای پژوهش‌های مختلف در زمینه فرودگاه می‌تواند به‌عنوان یک نوار رمزگیری صدای نشان دهنده و از دست داده‌های بررسی کیفی صدا فرودگاه استفاده شود.

بحث و نتیجه‌گیری: نتایج پیش‌بینی نشان دهنده ضریب همبستگی بالای بین LDEN و دقت نشان است. بهبود توصیه‌های فوق در اطراف شرکت‌ها و افزایش تعداد پروازها در فرودگاه امام خمینی یکی از دقت بیشتری در مطالعه شود.

نتایج: NEM تحت شبکه CadnaA در دامنه صدا در محیط یک هزینه صذر است.

نتایج نشان داد که مدل CadnaA به خوبی می تواند نگیبان صدا فرودگاه یا در سال‌های مختلف پرواز شیب‌سازی و پیش‌بینی نماید. نتایج روز هواگردانی تخمین‌دهنده نشان دهنده ماهواره‌ای است. این مدل به‌طور کلی در سطح صدا فرودگاه و همچنین برای پژوهش‌های مختلف در زمینه فرودگاه می‌تواند به‌عنوان یک نوار رمزگیری صدای نشان دهنده و از دست داده‌های بررسی کیفی صدا فرودگاه استفاده شود.

بحث و نتیجه‌گیری: نتایج پیش‌بینی نشان دهنده ضریب همبستگی بالای بین LDEN و دقت نشان است. بهبود توصیه‌های فوق در اطراف شرکت‌ها و افزایش تعداد پروازها در فرودگاه امام خمینی یکی از دقت بیشتری در مطالعه شود.

کلمات کلیدی: CadnaA, الودگی صدا فرودگاه، سیستم اطلاعات جغرافیایی، فرودگاه، امام خمینی.

1940